
Managing a BOINC Server
Experiences at World Community Grid

September 10, 2008

Introduction to World Community Grid

World Community Grid – funded by IBM’s Corporate Citizenship &
Corporate Affairs

Research projects who want to tap the power available from
volunteers but do not have the expertise or desire to run their own
project can apply to run on World Community Grid at:
http://www.worldcommunitygrid.org/projects_showcase/viewSubmitAProposal.do

Kevin Reed – Assigned to World Community Grid since before it
launched in November 2004

Over 235,000 results sent/received daily (~200 years of cpu time
returned daily)

Now Running at just under 200 TFlops

Running a volunteer BOINC project

 Purpose - Get lots of work processed through the grid quickly

 Things to consider
 Volunteered computers are heterogeneous

• Different OS, OS versions and processors
• Varying amounts of Ram
• Varying availability

 What resources do you have to run your project
• Server processing, storage and memory capacity

 Members need to feel involved
• Need to believe that you are using their computer in a valuable

way
• Need to believe that they are being fairly acknowledge for this

contribution

Workunit Lifecycle
1. Load a workunit
2. Create replicas of the workunit
3. Buffer replicas to send
4. Client requests work (assign replicas to client)
5. Download to client
6. Process on client
7. Upload result from client
8. Report result upload
9. Determine if there is a quorum of results
10.Compare results and award credit to members
11. Generate new replicas if consensus not reached
12.Assimilate result if consensus is reached
13.Delete workunit and result data
14.Purge records from the database

4. Client requests work (assign
replicas to client)

5. Download to client

Major Components

BOINC Working
Filesystem

Final Results
(Filesystem)

BOINC
Client

Web
Server

Scheduler
(cgi)

File
Upload
Handler

(cgi)

Shared
Memory Feeder

Validator

Assimilator
File

Deletor

DB
Purge

Work
Creator

MySQL

Work to be run
(Filesystem)

Transitioner

All components
use the db except
file upload handler

download

2. Create replicas of the workunit3. Buffer replicas to send

Standard BOINC component
 that access the db

6. Process on client7. Upload result from client8. Report result upload10. Compare results and award
credit to members

9. Determine if there is a quorum
of results

11. Generate new replicas if
consensus not reached

12. Assimilate result if consensus
is reached

Customized by the project

Standard BOINC component
 that doesn’t access the db

upload

scheduler
request

Web
Server

13. Delete workunit and result
data

14. Purge records from the
database

Load a workunit – Create Work
 Major Fields

 Input Files (Workunit)
 Output Files (Result)
 Estimated Flops (Flops)

• Can be hard to provide accurately – but it is critical!
• We were not good at this – so we use as our

estimate the computed flops of recently returned
results

• Client ‘duration correct factor’
• We have found that workunits that average about 5

hours of cpu time to be well received by members
 Resource Limits (Disk, Ram, Flops)

• Returned as error if any of these are exceeded

Load a workunit – Create Work
 Major Fields - continued

 Batch Id
• Used to delay file deletion until a group of workunits is done (useful if

they share some of the same download files)
 Deadline – a tricky balancing act

• Some systems are slow at returning results
• Researchers want the answer quickly
• Users want credit quickly
• We have deadlines that are 12 days long for workunits that average 8

hours of cpu time
• We have found that about 75% of our results are returned within 3 days

Load a workunit – Create Work
 Workunit Scheduling ‘A bad case’

 2 replicas created
 1 returned quickly and successfully
 1 is never returned so a new copy is sent
 That copy is reported as an error after half the deadline goes by
 Another copy is generated but when validation occurs the results don’t

match so a third copy is sent
 That copy finally matches the first and the workunit completes
 However, this could be 3-4 times the deadline set for the work

 When you are sending 100,000’s of workunits – this does happen!!!

 Use the ‘reliable’ mechanisms discussed below to minimize this

Load a workunit – Create Work
 Major Fields - continued

 Min Quorum (more info in discussion about validator)
 Num replicas

• allowed to be >= min quorum but I strongly advise
setting it equal to min quorum

 Priority
 Our create work script monitors the rate that workunits

are being distributed and four times a day it will load in
enough work for each project so that there is roughly
a 24 hours supply of work ready to send

 BOINC Website References
 http://boinc.berkeley.edu/trac/wiki/WorkGeneration
 http://boinc.berkeley.edu/trac/wiki/JobIn

http://boinc.berkeley.edu/trac/wiki/WorkGeneration
http://boinc.berkeley.edu/trac/wiki/WorkGeneration

Create replicas of the workunit – Transitioner
 The transitioner acts on the workunit and is the

primary daemon that advances the state of a workunit

 In this step of the process, the transitioner will see that
the workunit has no replicas created for the workunit.
It will create ‘Num replicas’ copies.

Buffer replicas to send – Feeder and Shared Memory

 The shared memory segment is used to store data
that is needed by the scheduler but requires
expensive database queries to obtain

 The feeder is a deamon whose purpose is to keep the
shared memory populated with data for quick access
by the scheduler

Buffer replicas to send – Feeder and Shared Memory

 Command line
 feeder -allapps -priority_order_create_time -mod 2 0 -d 3
 -allapps = ensures that each application will be present in the

shared memory segment with the number of ‘slots’ in proportion to
the ‘weight’ field for the application on the app table

 -priority_order_create_time = when querying the database for
results to send sort by result.priority desc and workunit.create_time
asc

 -mod 2 0 = We have two web servers and this is server 0 (our other
server would have –mod 2 1)

 Additional options at:
http://boinc.berkeley.edu/trac/wiki/BackendPrograms

Buffer replicas to send – Feeder and Shared Memory

 Important Settings – configuration file
 <shmem_work_items>N</shmem_work_items>

 <feeder_query_size>N</feeder_query_size>
 The appropriate settings to use are relative to the rate you

send results and how many applications you have work ready
to send

 We have 5 active research applications and send about
240,000 results/day (or 2.8 per second)

 We use: shmem_work_items=1800,
feeder_query_size=2*shmem_work_items

 More information at:
http://boinc.berkeley.edu/trac/wiki/ProjectConfigFile

Client requests work (assign replicas to client) - scheduler
 Clients periodically request work
 The server scheduler takes into account various parameters to assign work

to the client requesting work

 User Preferences
• Does the user want work from this application (for projects running

multiple applications)
 Client Capabilities

• Available Memory (actual ram adjusted by applicable user preferences)
• Available Disk Space (actual disk space adjust by applicable user

preferences)
• Is their an application binary available to send to this computer (co-

processors, operating system, processors, etc)

Client requests work (assign replicas to client) - scheduler
 Homogenous Class

• Set at the application level, evaluated for each client when it makes a
request

• BOINC provides 3 homogenous classes:
 0: not scored (some applications do not need this)
 1: fine grained (os and processor versions – 80 different

outcomes)
 2: coarse grained (windows, linux, mac-ppc, mac-intel)
 Projects can extend if desired.

• Client is evaluated based upon operating system, processor type and
additional factors if the project decides to extend

• More info at
http://boinc.berkeley.edu/trac/wiki/HomogeneousRedundancy

Client requests work (assign replicas to client) - scheduler
 Reliable Computers

• Does the client has a recent history of returning valid results quickly?
 <reliable_max_avg_turnaround>75600</reliable_max_avg_turnaround>

– Computers that return results within 21 hours of assignment

 <reliable_max_error_rate>0.001</reliable_max_error_rate>
– Recent history of over 99.9% valid results returned

 A good choice for these values are ones that allow about 15% of your project’s recent
credit to come from ‘reliable’ computers

• Is there a result that needs a reliable computers?
 <reliable_on_priority>10</reliable_on_priority>

– Results with a priority equal or greater to this value will only be sent to ‘reliable’
computers

• Reduce the deadline when assigned to a reliable computers
 <reliable_reduced_delay_bound>0.20</reliable_reduced_delay_bound>

– When assigned with this setting, reliable results will have a deadline of 20% of the original deadline –
so 12 days becomes 2.4 days

• The scheduler will give a preference to assign a reliable computer a result that
needs a reliable computer

• More Info at: http://boinc.berkeley.edu/trac/wiki/ProjectOptions

Client requests work (assign replicas to client) - scheduler
 Additional settings

• <daily_result_quota>80</daily_result_quota>
 This is the max number of results per processor that can be sent to a client

each calendar day. This should be set to the lowest value that will allow
the most powerful computer attached to your project to get enough work to
run at 100% for 24 hours. Useful for dealing limiting the impact of cyclers.

• <resend_lost_results>1</resend_lost_results>
 For various reasons, a result can be marked in the database as assigned

to a computer, but the computer doesn’t know about it (interrupted
communication, re-installation of the client, re-imaged computer, etc). This
setting will cause the server to notify the computer about these results

 This causes a moderately heavy db query so it is optional, however, the
biggest delay in finishing a workunit are results that ‘time-out’. This
function reduces the number of those considerable.

 We use this setting. I recommend that you use it unless your database is
under very heavy load

Client requests work (assign replicas to client) - scheduler
 Additional settings - continued

• <next_rpc_delay>345600</next_rpc_delay> and
<send_result_abort>1</send_result_abort>
 There are times when a project makes a mistake and has to cancel

workunits or a user shuts down their computer when they go on vacation.
In these cases, the work in progress can become unneeded or in the event
of a project mistake, useless. Next_rpc_delay ensures that any client with
boinc running and a internet connection available will talk to your project
again after at most X seconds. Send result abort instructs the project to
send messages to the client telling it to abort work under various
conditions if the work will no longer be useful.

Client requests work (assign replicas to client) - scheduler
 Additional settings - continued

• <one_result_per_user_per_wu/> or <one_result_per_host_per_wu/>
 Computers owned by a user (or the same computer) are more likely to

experience similar errors, these settings ensure that results from one
workunit are sent to different users or computers

 We use <one_result_per_user_per_wu/>

• <max_wus_in_progress> N </max_wus_in_progress>
 Optional – allows projects to limit the max number of results a client can

cache (per processor). Use of this will annoy some users.

• <min_sendwork_interval> and <max_wus_to_send>
 Controls how often a client can request work and for each request, how

many replicas can be assigned to the client. This is useful to limiting the
impact of ‘cyclers’ but too restrictive settings will annoy people with
powerful computers

 We use 60 seconds for min_sendwork_interval and 15 replicas per request
 More information is available: http://boinc.berkeley.edu/trac/wiki/ProjectOptions

Download to client – Apache HTTP Server
 Once assigned work, the client will identify files for the replica that it doesn’t

currently have locally. It will download those that it doesn’t have
 Files can be marked as sticky for the workunit. These are never deleted by the

client
 Dynamic compression of file downloads

 Your apache http server can be instructed to perform compression on the fly using
the mod_deflate module

 This saves user and project bandwidth
 Load on server is surprisingly moderate
 Our settings:

DeflateMemLevel 2
DeflateCompressionLevel 2
<Directory /boinc/data/download>
 SetOutputFilter DEFLATE
 SetEnvIfNoCase Request_URI \.(?:gz|gif|jpg|jpeg|png|jp2)$ no-gzip dont-vary
</Directory>

 More information at http://boinc.berkeley.edu/trac/wiki/FileCompression

Process on client - BOINC client
 The work runs (See Rom’s lecture for information)

Upload result from client – file_upload_handler
 The client uploads the result to the file_upload_handler

 Note that the file_upload_handler does not require db access

 If the result template is marked with <gzip_when_done/> then file
will be compressed before upload

 See http://boinc.berkeley.edu/trac/wiki/XmlFormat#Files for info

http://boinc.berkeley.edu/trac/wiki/XmlFormat

Upload result from client – file_upload_handler
 NOTE – the <gzip_when_done/> option was added with BOINC 5.8 so you may

get some results not compressed. You can use the code similar to the following
to open the file whether it is compressed or not:

int read_wcg_file_string(string file, string* result) {
 FILE *infile;
 char cmd[512] = '\0';
 char buf[4096];
 result->erase();

 //build the command
 strcat(cmd, "gzip -dcf ");
 strcat(cmd, file.c_str());

 infile = popen(cmd, "r");
 if (infile == NULL) return ERR_FOPEN;

 while(fgets(buf, 4096, infile) != NULL) result->append(buf);

 result->append("\0");
 if (pclose(infile) != 0) return 1;
 return 0;
}

Report result upload – scheduler
 The client makes a scheduler request to notify the server that the

result is done and has been uploaded (or report if the result
ended with an error)

 Note that this is a second step that occurs sometime after the
result files have been successfully uploaded

 This update causes the transitioner to be run for the workunit

Determine if there is a quorum of results - transitioner

 As each result is reported returned, the transitioner runs.

 If the result was a success and if it sees that there are at least
‘min_quorum’ results successfully returned, then it will trigger the
validator to run for the workunit

 If the result was an error and that the sum: # results ready to send + #
results in progress + # results returned successfully (validation pending
or inconclusive) < Num Replicas, then it will generate enough replicas
to make that sum equal to Num Replicas again

Determine if there is a quorum of results - transitioner

 Set <reliable_priority_on_over>10</reliable_priority_on_over> in order
to have the priority for these additional replicas set to: X +
Workunit.priority
 Use this to cause the additional replicas to be sent to reliable clients

 This setting in conjuction with the other ‘reliable’ settings for the
scheduler are key to significantly reducing the number of ‘bad case’
scenarios for a workunit

Compare results and award credit to members - validator

 The validator is responsible for determining if the results returned
for the workunit reach a consensus

 If min_quorum >= 2 then you can compare between the different
results
 Fuzzy validation = if you know that the results can vary by a certain

amount due to running on different platforms, then you can compare
the ranges of values

 Bitwise validation = if you a computation that diverges quickly for
small values, then you will need to set the appropriate homogenous
redundancy settings and make exact comparisons between files

 Note: Credit awarded is based off an agreement between the
claimed credits between the two results

Compare results and award credit to members - validator

 UPCOMING: If min_quorum = 1, then you should implement
some of the following in the check_one method
 A set of data run periodically throughout the workunit that can be

used to quickly determine on the server if the computation is
proceeding correctly (think floating point errors due to over clocking)

 A method to determine if the result was calculated based upon the
input files sent (think of a user trying to get lots of credit by skipping
the actual computation and always returning a result that passed
the above check)

 This mechanism will automatically send out a second copy of the
workunit if the computer the original copy was sent to does not
have a sufficiently high rate of recent valid results

 Also includes a random sampling during validation that will send
a second copy periodical to check the result

Generate new replicas if consensus not reached
 If no consensus is reached for the results returned, then increase

the value of ‘Num Replicas’ by one and have the transitioner
generate an additional result to send

 The other results are now marked ‘inconclusive’ and will be re-
examined once the additional result is returned

Assimilate result if consensus is reached - assimilator

 If consensus is reached, then one result is identified as the
‘canonical’ result that represents the correct computation

 The workunit is flagged for assimilation

 The assimilator will then run. The assimilator exists to allow a
project to archive the result in any manner that the project needs.

Delete workunit and result data – file_deletor
 After assimilation, the transitioner will determine that the workunit is

done and flag the workunit and results for deletion

 All workunits with a input file marked as “no_delete” will not be deleted

 1 hours after file_deletor is started and every 24 hours there after, the
file_deletor will identify the time the oldest workunit in the db was
created. It will then execute a find on the upload directory and delete
all results older than this time

Delete workunit and result data – file_deletor
 If file_deletor uses the option -dont_delete_batches, then workunits will

not be deleted unless their batch id = 0 (you need to have an external
process make the change)

 You can delay the deletion of files for a period of time after the last
result is returned using the <delete_delay_hours>. This is useful in
case you have some error occur and you need to correct
 Inevitably At some point you will have a problem
 We use 24 hours

Purge records from the database – db_purge
 Once the files have been deleted for the workunit and results,

then the records are eligible to be deleted

 They will be deleted based on the value of the command line
setting: -min_age_days n

 Members like to see a bit of their history so keep the records
around for awhile – however make sure that you do delete the
records otherwise your database will get very big

Other things good to know
 Beta Testing (users can opt-in to participating in beta testing).

This is a parameter set on the app table

 DBVisualizer is a great tool to query the database with (free):
http://www.minq.se/products/dbvis/download/

 Stop/Start scripts: http://boinc.berkeley.edu/trac/wiki/StartTool

http://www.minq.se/products/dbvis/download/
http://boinc.berkeley.edu/trac/wiki/StartTool

Questions?

