Replication and Redundancy in BOINC

Arnaud Legrand

Joint work with B. Gaujal, N. Gast (Inria Grenoble),
R. Righter, D. Anderson (UC Berkeley), W. Wu (CAS)

BOINC workshop, Budapest, September 2014

1/19

Improving BOINC Turnaround Time (Job Replication
g

© BOINC As a Storage Facility (Data Redundancy)

2/19

The Straggler Issue

@ FCFS scheduling on a desktop Grid[KTB*04]

&
=
=

P9
=3
3

o 100 tasks A.k.a the last finishing task issue
— 200 tasks
----- 400 tasks

©
g
L

In BOINC, large deadlines and
connection interval can make it
worse.

-
S
3

Cumulative Number of Tasks Completed

&

<

20 40 60 80
Time (minutes)

@ Can be quite problematic
e Batch information and the corresponding files need to stay on the
server (WCG) ~» server overload
e The system may starve when there is a limit on the number of active
batches (CAS@home).
e Many solutions in the literature... but few implemented in practice
e Exclude resources
e Prioritize resources

o Replicate jobs 3/19

The GridBot project

GridBot[SSGS09] (Technion - Israel Institute of Technology)
@ Focus on response time of BoTs
@ Use both community resources (BOINC) and grid resources (Condor)

@ Better than BOINC and than Condor for this kind of workload

e Replicate on reliable resources toward the end
o Tighter deadlines for reliable resources (although you have to be careful

with this. . .)
230
=1
g 25 ///;
i% 20f§ GridBot execution ends BOINC execution ends
£ 15
T 10
2 ~—— Unmodified BOIN
g 5 — GridBot
S ol

50 100 150 200 250
Time (hours)

o

@ Two other articles where BOINC is helped with reliable cloud resources

@ Focus on the response time optimization of a single large batch
4/19

A Glance At The CAS@home Workload

@ Batches comprise 32 jobs with roughly the same computation
workload.
@ The running time of a job is .5 to 4 hours.
e Jobs are short ~» elapsed_time is not so different from cpu_time.
@ Deadline is set to 36 hours

0.20-
§~o.75 - go .
5} o) 7
0.50 -
qg)- 03;0 10-
025~ £ 0.05-
0.00- I I I I 0.00- I I I I I
] 25 50 75 0 2 4 6 8
elapsed_time/3600 elapsed_time/3600
1.00 1.00 -
0.75- 0.75-
>0.50 - >0.50 -
0.25- 0.25-
0.00- 1 1 1 1 1 0.00 - 1 1 1 1 1
0 25 50 75 100] 2 4 6 8
elapsed_time/3600 elapsed_time/3600

90% of the jobs take less than two hours to run 5 /19

A Glance At The CAS@home Workload

@ Batches comprise 32 jobs with roughly the same computation

workload.

The running time of a job is .5 to 4 hours.
e Jobs are short ~» elapsed_time is not so different from cpu_time.

Deadline is set to 36 hours

1.00 -
B0.75-
5
3050~
o
1<
T 0.25-

0.00-

1 1 1 1
0 1000 2000 3000

turnaround_time/3600

1.00 -
0.75-
>0.50 -
0.25-

0.00 - : : :
0 1000 2000 3000
turnaround_time/3600

The job turnaround can be huge! (up to 5 months!)

0.25-
5.0.20 -
2
£015-
20.10-
o
(£ 0.05-
0.00-

10 20 30
turnaround_time/3600

o-

1.00-
0.75 -
>0.50 -
0.25-

0.00 -

10 20 30
turnaround_time/3600

o-

5/19

A Glance At The CAS@home Workload

@ Batches comprise 32 jobs with roughly the same computation

workload.

The running time of a job is .5 to 4 hours.
e Jobs are short ~» elapsed_time is not so different from cpu_time.

Deadline is set to 36 hours

Frequency

0 500 1000 1500
(completion_time - create_time)/3600

1.00 -
0.75-
>0.50 -
0.25-

0.00 -

500 1000 1500
(completlon time - create_time)/3600

and so is the batch turnaround...

Frequency

0 25 50 75 100
(completion_time - create_time)/3600

1.00-
0.75 -
>0.50 -
0.25-
0.00 -

] 50 75 100
(completlon time — create_time)/3600

5/19

A Glance At The CAS@home Workload

@ Batches comprise 32 jobs with roughly the same computation

workload.
@ The running time of a job is .5 to 4 hours.
e Jobs are short ~» elapsed_time is not so different from cpu_time.

@ Deadline is set to 36 hours

e CAS@home now has no more than 300 active batches at a time (a
new batch comes in only when another one is completed) so the
system can starve.

@ At the moment: one additional replica for each job to improve the
batch response time, which improves the system throughput despite
the waste.

5/19

CAS@home: An Evolving System

B0 -

5]

E,
batchid

Evolution of the number of jobs sent per batch

6/19

C ome: An Evolving System

(=]

(=]

wo_

o 75—

=

[

E

=

,ul factor{period)
w

I 1
? s0- 2
£ 3
:I 4
=

2

B

o .

E 25- »

Q

LA

20130 2013407 201401 201407
CompDateTime

Evolution of the batch response time (hours)

6/19

CAS@home: An Evolving System

period Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1.25 16.61 25.24 29.46 37.65 99.75
0.98 19.15 2496 28.04 32.90 99.45
1.00 9.00 14.01 18.98 23.01 99.49
1.00 7.00 11.01 13.05 16.01 52.01

B w N

Evolution of the batch response time (hours)
6/19

CAS@home: An Evolving System

factar{period)
* 1

= 1.01204819277108

+ 1.61324041811847
=
+ 1.71705426356569
- + 1.04385197183000
.
* 1.00502487562160
500~
2 id 2
o + 2.04639175257732
N
7 * 273073973873874
5 P
B :) + 2005160082125
LT s 3 i
25 - -g- - .3
o ., X v e - » 3.33333333333333
£ ,t* + 3.5001035483871
- o L Y
E Y CIC A R a*
» &) -
1 [L ‘.h i & i * -
201 301 201 3407 201401 2001 4-07
CompDate

Evolution of the batch throughput (batch per day)

6/19

£
(]
)
w0
>
)
Qo
=
=
o
>
L
c
<

CAS@home

S HIEE R FLEREE
[- [] te
-3 re
2 2 -
2 g
& &
-8 re
R O N RO S ASILOUPUPIPOUPIPIUPNY (U N i AHA.
il :;;5 Mew b Lalbd H?h\n Sl
- ; ; ; Ll -
g 8
e re
=
3
- ©
g reE
2 £
\\\\\\ st areheree
PR TE (s I R~ i AP Ao Y i
““““““““““““““““““““““ —of, v
o])) o Lo E
83, #s
[2
H
8
Lo
e 2
g
2 g
3 H "
B e e LN T St B g
R I
“““““““““““““““““““““““ o
} ; i te
[-8
re
i
Lo
“““““““““““““ A I
- H
2
& Lo
= B
-8
I
cecgorand ol L L LA e Ll oo a8 & o

8 & 9
009¢g/6Ae punoseun)

6/19

Evolution of the scheduling

What Can We Do About It?

@ Improving job response time would help:

o Decrease-the-deadlines (volunteers will complain)
o Implement an "execute as possible" option
e Implement a "report as possible" option
@ The server can make a smarter use of resources. Whenever a host
requests work, look for the right batch:
e There is a continuum of behaviors and setting thresholds is difficult
e Intuitively: use the fastest hosts to get rid of "almost finished" batches
e We may want to "sacrifice" a batch to slow unreliable hosts so that
they can still contribute without hurting response time
o Last week, we have crafted a simulation of BOINC and fed it with a
profile of the CAS@home volunteers

@ Short term work: check the modeling, test scheduling alternatives

@ Long term work: handle non identical batches (SRPT), fair sharing
between umbrella projects

7/19

Improving BOINC Turnaround Time (Job Replication
g

© BOINC As a Storage Facility (Data Redundancy)

8/19

BOINC As a Storage Facility

Volunteer computing is based on the idea that idle personal computers
could as well be used to make distributed computations.

David coined a few years ago that we could do the same with storage space.

Disk space average 50 GB available per client ~» 35 Petabytes total

Trends disk sizes increasing exponentially, even faster than processing
power.

e 1 TB x 1M clients = 1 Exabyte

Could we construct a distributed "data center" from empty disk space from
volunteers?

9/19

Volunteer Data Archival

Same difficulty as usual:

@ Volunteers are unreliable resources. They may leave (or enter) the
system at any time, destroying whatever data and computations thy
have been storing.

@ Volunteers cannot be easily contacted. In BOINC, we need to
volunteers to contact the server.

Our goal is to design a reliable data storage out of unreliable volunteers by
coding data and storing redundant chunks in volunteers.

e Files originate on server
Chunks of files are stored on clients

]
@ Files can be reconstructed on server (with high latency)
@ Design Goals

e arbitrarily high reliability (99.999%)
e support large files

10/19

David's Proposal : Two-Level Coding + Replication

Two-level coding

 Can tolerate K? client failures
» Space overhead: 125%

Open questions: Why two levels 7 How much redundancy ?

Using a Cost Model. . .

Assumptions:
@ Single file split in V chunks
@ Local storage is expensive: holding cost of H per time unit and per
chunk.
@ Each volunteer stores one chunk of data

@ Erasure coding: the whole file is encoded with M > N chunks but any
N chunks out of M can be used to recreate the file

e The server can create and upload a chunk to a volunteer iff it has N
chunks in its own memory.

How to choose the best redundancy M — N7

12/19

... and Markov Chains

Volunteers are independent from each others so we can model most events
as Poisson process.

@ New volunteers join the system and request data with rate .

@ Each volunteer that is already storing a chunk is called a data
volunteer.

e Data volunteers contact the server at rate « (in which case the server
can download its chunk)

e Data volunteers leave the system at rate « (in which case its chunk is
lost)

At any time, the state of the system is characterized by (n, m):
@ n is the number of chunks stored locally
@ m is the number of data volunteers

If the file is lost (when the system moves to (n, m) where N < n+ m) a
large cost C is incurred and we go to (N, 0).

13/19

Control Actions

n : number of chunk in the server
N Upload (A — ma)

Collect (ym)

Do Nothing [(am)
Drop

m: nb. of data volunteers

M: maximal redundancy
The server has four available actions:

Upload changes new volunteers into data volunteers. As long as n > N,
this is possible ‘Whenever a new volunteer arrives ‘ The state changes to
(n,m+1).

Collect ‘Whenever a data volunteer arrives| the server can collect its
chunk. The state changes to (n+1,m —1).

Drop erases any k < n chunks from memory, changing the state from
(n,m) to (n— k, m)

Do Nothing in which case some chunks are lost when data volunteers |eﬁ‘§e19

What Does The Optimal Policy Look like 7

n : number of chunk in the server
N Upload
Drop
Lol . Bevahior under
Do nothing optimal policy
ro o
P m: nb. of data volunteers
m,) .
o When n > N: drop to N 0 M: maximal redundancy

@ When we have the whole file (n = N), as long as m < M, there is
nothing to loose in uploading the file (except the holding cost).
@ When we reach state (N, M), it will be optimal to immediately drop
N — ng > 0 chunks for some ny.
@ There are two switching curves fi(m) > f(m), such that:
e for n > fi(m) it will be optimal to do nothing,
o for f(m) < n < fi(m) it will be optimal to collect chunks,

e for n < f,(m) it will be optimal to drop chunks. o)

Fluid Approximation

Computing f; and f, for a given N and M is very hard. However, when N
and M go to infinity, things average out (fluid approximation).

n : number of chunk in the server
N

m: nb. of data voluntee

The rate out of state (n, m) is (n, m) wheré M: maximal redundancy

e (n,m) = (0, —ma) if the action is to do nothing,

e (n,m)=(0,\— ma) if n= N and the action is to upload,

e (n,m) = (my,—m(vy+ «)) if the action is to collect,

e and the fluid immediately drops from (n, m) to (ng, m) if the action is
to drop n — ng > 0 of “ chunk fluid”.

16 /19

Fluid Approximation

Computing f; and f, for a given N and M is very hard. However, when N
and M go to infinity, things average out (fluid approximation).

n : number of chunk in the server
N

mo
m: nb. of data voluntee

The rate out of state (n, m) is (n, m) where M: maximal redundancy

e (n,m) = (0, —ma) if the action is to do nothing,

e (n,m)=(0,\— ma) if n= N and the action is to upload,

e (n,m) = (my,—m(vy+ «)) if the action is to collect,

e and the fluid immediately drops from (n, m) to (ng, m) if the action is
to drop n — ng > 0 of “ chunk fluid”.

16 /19

Cost for the Fluid Approximation

o Starting from (N,O) we Upload and move Wl number of chunk in the server
to (N, M) at rate (n, m) = (0, A — ma).

m:_nb. o

C]_ — HNt]_ — M In <#) Mo M: maximal redt

@ We immediately drop to state (0, M) at t; at no cost.
© From (0, M), do nothing and move to (0, mg) at rate (0, —ma).

to = (In(M) —In(N(a +~)/v+1)) Jaand & =0
© From (0, mg) we collect new chunks and move back towards (N, 1) at
rate (n, m) = (ym, —(y + a)m).
ts .,+a|"(N(04+7)/’Y+1)
G = (L (Mo +2)/7 + D) In(N(a +7)/7 + 1)

G+ G

In both cases, the total average costis|V = —————
th+t+ 13

17 /19

Optimal Redundancy

Nln (A—?xM) + (Vl‘z)z(l + mg In(mg))

(ln () +n M) — 2 In(mo)

1500 4

We get V=H

1000 4

With a =1, v=1, A =300,
N =30, H = 20, we get:

M
500

200 400 600 800 1000
M

The two level coding is not in the picture yet but it seems feasible to
incorporate it.

18/19

References

& Derrrick Kondo, M. Taufer, C. Brooks, Henri Casanova, and Andrew A. Chien.
Characterizing and Evaluating Desktop Grids: An Empirical Study.
In Proc. of the Intl. Parallel and Distributed Processing Symp. (IPDPS), 2004.

[@ Mark Silberstein, Artyom Sharov, Dan Geiger, and Assaf Schuster.
Gridbot: execution of bags of tasks in multiple grids.
In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis,
SC '09, New York, NY, USA, 2009. ACM.

19/19

	Improving BOINC Turnaround Time (Job Replication)
	BOINC As a Storage Facility (Data Redundancy)

