
Replication and Redundancy in BOINC

Arnaud Legrand

Joint work with B. Gaujal, N. Gast (Inria Grenoble),
R. Righter, D. Anderson (UC Berkeley), W. Wu (CAS)

BOINC workshop, Budapest, September 2014

1 / 19

Outline

1 Improving BOINC Turnaround Time (Job Replication)

2 BOINC As a Storage Facility (Data Redundancy)

2 / 19

The Straggler Issue

FCFS scheduling on a desktop Grid[KTB+04]

A.k.a the last �nishing task issue

In BOINC, large deadlines and
connection interval can make it
worse.

Can be quite problematic
Batch information and the corresponding �les need to stay on the
server (WCG) ; server overload
The system may starve when there is a limit on the number of active
batches (CAS@home).

Many solutions in the literature. . . but few implemented in practice
Exclude resources
Prioritize resources
Replicate jobs

3 / 19

The GridBot project

GridBot[SSGS09] (Technion - Israel Institute of Technology)

Focus on response time of BoTs

Use both community resources (BOINC) and grid resources (Condor)

Better than BOINC and than Condor for this kind of workload
Replicate on reliable resources toward the end

Tighter deadlines for reliable resources (although you have to be careful
with this. . .)

C
o
m

p
le

te
d
 j

o
b
s

(t
h
o
u
sa

n
d
s)

BOINC execution endsGridBot execution ends

Unmodi�ed BOINC
GridBot

50 100
Time (hours)

150 200 2500
0

5

30

25

20

15

10

Two other articles where BOINC is helped with reliable cloud resources

Focus on the response time optimization of a single large batch
4 / 19

A Glance At The CAS@home Workload

Batches comprise 32 jobs with roughly the same computation
workload.
The running time of a job is .5 to 4 hours.

Jobs are short ; elapsed_time is not so di�erent from cpu_time.

Deadline is set to 36 hours

0.00

0.25

0.50

0.75

0 25 50 75
elapsed_time/3600

F
re

qu
en

cy

0.00

0.05

0.10

0.15

0.20

0 2 4 6 8
elapsed_time/3600

F
re

qu
en

cy

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
elapsed_time/3600

y

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8
elapsed_time/3600

y

90% of the jobs take less than two hours to run

CAS@home now has no more than 300 active batches at a time (a
new batch comes in only when another one is completed) so the
system can starve.
At the moment: one additional replica for each job to improve the
batch response time, which improves the system throughput despite
the waste.

5 / 19

A Glance At The CAS@home Workload

Batches comprise 32 jobs with roughly the same computation
workload.
The running time of a job is .5 to 4 hours.

Jobs are short ; elapsed_time is not so di�erent from cpu_time.

Deadline is set to 36 hours

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
turnaround_time/3600

F
re

qu
en

cy

0.00

0.05

0.10

0.15

0.20

0.25

0 10 20 30
turnaround_time/3600

F
re

qu
en

cy

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000
turnaround_time/3600

y

0.00

0.25

0.50

0.75

1.00

0 10 20 30
turnaround_time/3600

y

The job turnaround can be huge! (up to 5 months!)

CAS@home now has no more than 300 active batches at a time (a
new batch comes in only when another one is completed) so the
system can starve.
At the moment: one additional replica for each job to improve the
batch response time, which improves the system throughput despite
the waste.

5 / 19

A Glance At The CAS@home Workload

Batches comprise 32 jobs with roughly the same computation
workload.
The running time of a job is .5 to 4 hours.

Jobs are short ; elapsed_time is not so di�erent from cpu_time.

Deadline is set to 36 hours

0.00

0.25

0.50

0.75

0 500 1000 1500
(completion_time − create_time)/3600

F
re

qu
en

cy

0.00

0.05

0.10

0.15

0 25 50 75 100
(completion_time − create_time)/3600

F
re

qu
en

cy

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500
(completion_time − create_time)/3600

y

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
(completion_time − create_time)/3600

y

and so is the batch turnaround...

CAS@home now has no more than 300 active batches at a time (a
new batch comes in only when another one is completed) so the
system can starve.
At the moment: one additional replica for each job to improve the
batch response time, which improves the system throughput despite
the waste.

5 / 19

A Glance At The CAS@home Workload

Batches comprise 32 jobs with roughly the same computation
workload.
The running time of a job is .5 to 4 hours.

Jobs are short ; elapsed_time is not so di�erent from cpu_time.

Deadline is set to 36 hours

CAS@home now has no more than 300 active batches at a time (a
new batch comes in only when another one is completed) so the
system can starve.
At the moment: one additional replica for each job to improve the
batch response time, which improves the system throughput despite
the waste.

5 / 19

CAS@home: An Evolving System

Evolution of the number of jobs sent per batch
6 / 19

CAS@home: An Evolving System

Evolution of the batch response time (hours)
6 / 19

CAS@home: An Evolving System

period Min. 1st Qu. Median Mean 3rd Qu. Max.

1 1.25 16.61 25.24 29.46 37.65 99.75
2 0.98 19.15 24.96 28.04 32.90 99.45
3 1.00 9.00 14.01 18.98 23.01 99.49
4 1.00 7.00 11.01 13.05 16.01 52.01

Evolution of the batch response time (hours)
6 / 19

CAS@home: An Evolving System

Evolution of the batch throughput (batch per day)
6 / 19

CAS@home: An Evolving System

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

 7156 11415 32708 53170

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
rel_sent_time

factor(workunitid%%5)

●●

●●

●●

●●

●●

0

1

2

3

4

●●●

●
●

●●● ●●●

●●●
●●

●●

●●

●
●●●●

●

●●●● ●●●●●●●

●

●

●
●●

●

●
●
●

●●●●●●
●
●

●

●
●

●●●●

●

●●●

●

●
●●

●
●

●●●●●

●
●

●
●●●

●●

●
●

●
●●●

●

●
●●

●

●
●●●●

●
●

●

●●
●

●
●

●●

●●●

●●●●●●●

●

●●●
●●●●●

●

●

●●

●●●

●

●●
● ●● ●●
●●●●

●● ●●

●● ●●

●● ●●

●

●●●●●

●●●●●

●●
●●●● ●●●●● ●●●●●●●●●●

●●

 7156 11415 32708 53170

0

10

20

30

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
rel_received_time − rel_sent_time

tu
rn

ar
ou

nd
_a

vg
/3

60
0

factor(workunitid%%5)

●

●

●

●

●

0

1

2

3

4

Evolution of the scheduling
6 / 19

What Can We Do About It?

Improving job response time would help:

Decrease the deadlines (volunteers will complain)
Implement an "execute as possible" option
Implement a "report as possible" option

The server can make a smarter use of resources. Whenever a host
requests work, look for the right batch:

There is a continuum of behaviors and setting thresholds is di�cult
Intuitively: use the fastest hosts to get rid of "almost �nished" batches
We may want to "sacri�ce" a batch to slow unreliable hosts so that
they can still contribute without hurting response time

Last week, we have crafted a simulation of BOINC and fed it with a
pro�le of the CAS@home volunteers

Short term work: check the modeling, test scheduling alternatives

Long term work: handle non identical batches (SRPT), fair sharing
between umbrella projects

7 / 19

Outline

1 Improving BOINC Turnaround Time (Job Replication)

2 BOINC As a Storage Facility (Data Redundancy)

8 / 19

BOINC As a Storage Facility

Volunteer computing is based on the idea that idle personal computers
could as well be used to make distributed computations.

David coined a few years ago that we could do the same with storage space.

Disk space average 50 GB available per client ; 35 Petabytes total

Trends disk sizes increasing exponentially, even faster than processing
power.

1 TB × 1M clients = 1 Exabyte

Could we construct a distributed "data center" from empty disk space from
volunteers?

9 / 19

Volunteer Data Archival

Same di�culty as usual:

Volunteers are unreliable resources. They may leave (or enter) the
system at any time, destroying whatever data and computations thy
have been storing.

Volunteers cannot be easily contacted. In BOINC, we need to
volunteers to contact the server.

Our goal is to design a reliable data storage out of unreliable volunteers by
coding data and storing redundant chunks in volunteers.

Files originate on server

Chunks of �les are stored on clients

Files can be reconstructed on server (with high latency)

Design Goals

arbitrarily high reliability (99.999%)
support large �les

10 / 19

David's Proposal : Two-Level Coding + Replication

Two-level coding

● Can tolerate K2 client failures
● Space overhead: 125%

Open questions: Why two levels ? How much redundancy ?
11 / 19

Using a Cost Model. . .

Assumptions:

Single �le split in N chunks

Local storage is expensive: holding cost of H per time unit and per
chunk.

Each volunteer stores one chunk of data

Erasure coding: the whole �le is encoded with M ≥ N chunks but any
N chunks out of M can be used to recreate the �le

The server can create and upload a chunk to a volunteer i� it has N
chunks in its own memory.

How to choose the best redundancy M − N?

12 / 19

. . . and Markov Chains

Volunteers are independent from each others so we can model most events
as Poisson process.

New volunteers join the system and request data with rate λ.

Each volunteer that is already storing a chunk is called a data
volunteer.

Data volunteers contact the server at rate γ (in which case the server
can download its chunk)
Data volunteers leave the system at rate α (in which case its chunk is
lost)

At any time, the state of the system is characterized by (n,m):

n is the number of chunks stored locally

m is the number of data volunteers

If the �le is lost (when the system moves to (n,m) where N < n +m) a
large cost C is incurred and we go to (N, 0).

13 / 19

Control Actions

N
n : number of chunk in the server

M : maximal redundancy

m: nb. of data volunteers

Upload (λ−mα)

Do Nothing (αm)

Drop

Collect (γm)

The server has four available actions:

Upload changes new volunteers into data volunteers. As long as n ≥ N,
this is possible whenever a new volunteer arrives . The state changes to
(n,m + 1).

Collect Whenever a data volunteer arrives , the server can collect its
chunk. The state changes to (n + 1,m − 1).

Drop erases any k ≤ n chunks from memory, changing the state from
(n,m) to (n − k,m)

Do Nothing in which case some chunks are lost when data volunteers leave
14 / 19

What Does The Optimal Policy Look like ?

Do nothing
Collect

Upload
Drop

n0

optimal policy
Bevahior under

Drop

m0

N
n : number of chunk in the server

M : maximal redundancy

m: nb. of data volunteers

When n ≥ N: drop to N
When we have the whole �le (n = N), as long as m < M, there is
nothing to loose in uploading the �le (except the holding cost).
When we reach state (N,M), it will be optimal to immediately drop
N − n0 > 0 chunks for some n0.
There are two switching curves f1(m) ≥ f2(m), such that:

for n ≥ f1(m) it will be optimal to do nothing,
for f2(m) ≤ n < f1(m) it will be optimal to collect chunks,
for n < f2(m) it will be optimal to drop chunks.

15 / 19

Fluid Approximation

Computing f1 and f2 for a given N and M is very hard. However, when N
and M go to in�nity, things average out (�uid approximation).

N
n : number of chunk in the server

M : maximal redundancy

m: nb. of data volunteers
m0

The rate out of state (n,m) is (ṅ, ṁ) where

(ṅ, ṁ) = (0,−mα) if the action is to do nothing,

(ṅ, ṁ) = (0, λ−mα) if n = N and the action is to upload,

(ṅ, ṁ) = (mγ,−m(γ + α)) if the action is to collect,

and the �uid immediately drops from (n,m) to (n0,m) if the action is
to drop n − n0 ≥ 0 of � chunk �uid�.

16 / 19

Fluid Approximation

Computing f1 and f2 for a given N and M is very hard. However, when N
and M go to in�nity, things average out (�uid approximation).

N
n : number of chunk in the server

M : maximal redundancy

m: nb. of data volunteers
m0

The rate out of state (n,m) is (ṅ, ṁ) where

(ṅ, ṁ) = (0,−mα) if the action is to do nothing,

(ṅ, ṁ) = (0, λ−mα) if n = N and the action is to upload,

(ṅ, ṁ) = (mγ,−m(γ + α)) if the action is to collect,

and the �uid immediately drops from (n,m) to (n0,m) if the action is
to drop n − n0 ≥ 0 of � chunk �uid�.

16 / 19

Cost for the Fluid Approximation

N
n : number of chunk in the server

M : maximal redundancy

m: nb. of data volunteers
m0

1 Starting from (N, 0) we upload and move
to (N,M) at rate (ṅ, ṁ) = (0, λ−mα).t1 = − 1

α ln
(
1− α

λM
)
= 1

α ln
(

λ
λ−αM

)
C1 = HNt1 =

HN
α ln

(
λ

λ−αM

)
2 We immediately drop to state (0,M) at t1 at no cost.
3 From (0,M), do nothing and move to (0,m0) at rate (0,−mα).

t2 = (ln(M)− ln(N(α+ γ)/γ + 1)) /α and C2 = 0

4 From (0,m0) we collect new chunks and move back towards (N, 1) at
rate (ṅ, ṁ) = (γm,−(γ + α)m).{

t3 = 1
γ+α ln(N(α+ γ)/γ + 1)

C3 = Hγ
(γ+α)2

(1+ (N(α+ γ)/γ + 1) ln(N(α+ γ)/γ + 1))

In both cases, the total average cost is V =
C1 + C3

t1 + t2 + t3
17 / 19

Optimal Redundancy

We get V = H
N ln

(
λ

λ−αM

)
+ γα

(γ+α)2
(1+m0 ln(m0))(

ln
(

λ
λ−αM

)
+ lnM

)
− γ

γ+α ln(m0)

With α = 1, γ = 1, λ = 300,
N = 30, H = 20, we get:

The two level coding is not in the picture yet but it seems feasible to
incorporate it.

18 / 19

References

Derrrick Kondo, M. Taufer, C. Brooks, Henri Casanova, and Andrew A. Chien.
Characterizing and Evaluating Desktop Grids: An Empirical Study.
In Proc. of the Intl. Parallel and Distributed Processing Symp. (IPDPS), 2004.

Mark Silberstein, Artyom Sharov, Dan Geiger, and Assaf Schuster.
Gridbot: execution of bags of tasks in multiple grids.
In Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis,
SC '09, New York, NY, USA, 2009. ACM.

19 / 19

	Improving BOINC Turnaround Time (Job Replication)
	BOINC As a Storage Facility (Data Redundancy)

