
Paralellizing large search in BOINC: a case study

Wenjie Fang, Université Paris Diderot
in co-operation with yoyo@home

BOINC Workshop 2013, Grenoble, France

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Large search

Brute-force search

Sometimes we just don’t have good algorithms.

Satisfaction problem and constraint programming

Combinatorial optimization

Artificial intelligence

Conjecture verification

etc...

Quotation

When in doubt, use brute force.

– Ken Thompson

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Large search

Backtracking

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Large search

Our case: Odd Weird Search

A weird number is a notion related to proper divisors. It is unknown
whether an odd weird number exists, and the great mathematician Paul
Erdös offered a prize for it.

S(n) = {k / k < n, k|n}.
∑

k∈S(n)

k > n ∧ ∀S′ ⊂ S(n),
∑
k∈S′

k 6= n.

We want to search for an odd weird number.

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Large search

Our case: Odd Weird Search

To check if a number is weird, we need to obtain its proper divisors.

Näıve way
For each odd number, we factorize it, calculate its proper divisors,
solve a subset sum problem to determine if it is weird.
Factorization very expensive, but easy to partition.

Backtracking
We construct (or search) directly the factorization, and backtrack
whenever possible. The rest is the same.
Much faster, but difficult to partition.

Of course we go the difficult but faster way.

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Our scheme

Difficulties

Although much faster, backtracking is difficult to paralellize.

No good and simple estimate of search volume, only rough and
simple ones

Irregularity of subtrees

In the BOINC context, it is even harder. We want to meet the following
demand to please our volunteers:

Reasonable and consistent runtime for every workunit (< 12h)

Reasonable progress bar

Easy workunit generation

None of them is easy.

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Our scheme

Previous attempts

There are already some projects that parallelize their search of similar
flavor.

Rectilinear Crossing Number (with occasional extremely huge
workunits)

NQueens@home (smooth search space)

SAT@home (expensive Monte Carlo estimation)

etc...

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Our scheme

Our solution

No good and simple estimate, so we just use rough and simple ones!
Rough estimate + Irregular subtrees ⇒ workunits of varying size

Our trick

Just force every workunit to stop after some time and then send back
its checkpoint.
We then recycle checkpoints sent back as workunits.

We wrote a mechanism to roughly estimate running time by counting
operations in expensive functions.
This estimate can be off by 20%, but still consistent, and we have a
control.
And we have a progress bar for free!

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Our scheme

What does it look like?

BOINC server Volunteers’
machines

input

result

checkpoint

For simplicity, three types of file share the same format.

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Our scheme

Issues

At the end, throughput will drop due to low “liquidity”.

Shorten deadline to increase “liquidity”

Send more initial replica to shorten waiting time

Compute locally when not many are left

To assure correctness, we do a quorum 2.
Our scheme only works when we only care about the search as a whole,
and when the checkpoint is not large.

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Conclusion

Conclusion

Our scheme can be used to parallelize a large class of search with a rough
search volume estimate. In fact, an upperbound would work.
In fact, it works as a potential solution to large workunits, if latency is
not important.
Future work:

Better recycle strategy

Estimation of search volume of recycled workunits
Priority of different recycled workunits

Automatic control of “liquidity”

Quantitative analysis?

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study



Conclusion

Thanks for your attention!

Wenjie Fang, Université Paris Diderot in co-operation with yoyo@home

Paralellizing large search in BOINC: a case study


	Large search
	Large search

	Our scheme
	Our scheme

	Conclusion
	Conclusion


