Future Directions for Einstein @Home

Bruce Allen
Overview of Einstein@Home

• **Launched** in 2005. Work done at the Albert Einstein Institute and the University of Wisconsin.

• **Science**: search for *gravitational waves* from rapidly spinning neutron stars, using data from an international detector network.

• **Users**: typically about 60,000 active hosts.

• **BOINC Setup**: standard, but with “locality scheduling” features enabled.

• **First formal publication**: appearing in Physical Review D later this month.
What are we looking for?

Neutron Stars

• Predicted by Chandrasekhar in 1930 and discovered by accident in 1967.
• Formed in explosion (supernova) at the end of the life of an ordinary star.
• Protons and electrons of ordinary matter ‘crushed together’ to form a ‘giant atomic nucleus’ made of neutrons.
• Neutron stars have masses similar to our Sun but a radius of only about 10 km! They can spin very rapidly (> 700 rotations/second).
• Very strong gravity: “almost” a black hole. Light can still escape, but barely!.
• A few thousand are visible as ‘radio pulsars’ but our Galaxy is expected to contain hundreds of millions.
• Rapidly spinning neutron stars should emit gravitational waves. These are known to be weak, but we do not know how weak.

Crab Nebula (1054 AD)
R = 12 km, P = 33 msec,
What are Gravitational Waves?

• In Einstein’s theory of General Relativity, mass and energy curve the geometry of space-time.
• If rapidly spinning neutron stars have small bumps or “mountains” then they can produce “ripples” in the geometry of space-time which travel outwards from the star at the speed of light.
• Einstein predicted their existence in 1916. He estimated the amplitude of these waves and concluded that they were too weak to detect.
• **Einstein was wrong about this**: in the coming years we will detect these wave directly!
The most sensitive gravitational wave detectors

All became operational during the past ten years.

LIGO H

GEO-600 (Ruthe) Operated by AEI

LIGO L

VIRGO
Past and Current Einstein@Home Searches

- **LIGO S3 data (600 hours)**
 60 x 10 hours coherent integration
 Results presented on-line.
 No detections.
- **LIGO S4 data (510 hours)**
 17 x 30 hours coherent integration
 Results paper completed in May 2007, just appearing now
 No detections.
- **LIGO S5 data (840 hours)**
 28 x 30 hours coherent integration
 First search (S5R1) completed about one year ago.
 Post-processing finished, results under review in LIGO Scientific Collaboration.
- **LIGO S5 data (3618.5 hours)**
 84 x ~40 hours coherent integration
 Search just finishing now (S5R3) and post-processing starting
 First search using the best available incoherent combination method
- **LIGO S5 data (5280 hours)**
 121 x ~40 hours coherent integration
 Search just starting now (S5R4)
What’s Coming?

• Gravitational wave detectors are getting better.
 - 2009, LIGO S6 (factor of two improvement)
 - 2013, Advanced LIGO (another factor of five improvement)
• Soon hope to have Graphics Processing Unit (GPU) code available for Nvidia graphics cards, giving an order-of-magnitude improvement in processing speed. This should allow longer coherent integration times, increasing the sensitivity.
• We will provide all the screensaver code nicely packaged so that users can modify it or write their own. Based on new SDL graphics library (no more GLUT).
• Discussions within the LSC about also packaging the science code to allow users to do additional optimizations.
• Searches for radio pulsars in short-period binaries, using radio data from Arecibo.
Search for radio pulsars in short period binaries

Science Motivation
- Current searches for radio pulsars lose sensitivity when orbital period < 50 minutes
- But our Galaxy should contain binary neutron stars with periods as short as 4 - 6 minutes!
- These short-period systems have high orbital velocities, which magnifies relativistic effects
- Important for gravitational physics: predict Galactic binary inspiral rates; LISA calibration sources
- We have developed a (computationally expensive) detection technique for stars in binaries with periods > 10 minutes

Psychological Motivation
- Hope to find new relativistic pulsars on an annual basis. These discoveries should be exciting for Einstein@Home volunteers and help in retaining and attracting them

Data source: Arecibo PALFA
Technical Issues

• Radio pulsar search workunits will be shorter (~ 4 hours) and use smaller data sets (2MB) than current Einstein@Home gravitational wave searches. And the data sets are only used once!

• Mixture of locality and non-locality scheduling

• Should we let users control the mixture of workunits?