
Local Scheduling for Volunteer Computing

David P. Anderson1, John McLeod VII2

1 U.C. Berkeley Space Sciences Laboratory
Berkeley, CA 94720

davea@ssl.berkeley.edu

2 652 Crescent Ridge Trail
Mableton, GA 30126

jm7@acm.org

Abstract

BOINC, a middleware system for volunteer

computing, involves projects, which distribute jobs,

and hosts, which execute jobs. The local (host-level)

scheduler addresses two issues: when to fetch new jobs

from a project and, of the currently runnable jobs,

which to execute. It seeks to simultaneously satisfy a

number of constraints – such as maintaining given

long-term ratios of work between projects, meeting

deadlines for job reporting, and providing variety to

the volunteer – using uncertain, dynamic information

about resources and jobs. We describe these goals

and factors, and discuss BOINC's local scheduling

policies.

1. Introduction

Volunteer computing is a form of distributed
computing in which the general public volunteers
processing and storage resources to computing

projects. Early volunteer computing projects include
the Great Internet Mersenne Prime Search [10] and
Distributed.net [9]. Unlike other types of distributed

computing, volunteer computing uses anonymous,
untrusted resources.

BOINC (Berkeley Open Infrastructure for Network

Computing) is a middleware system for volunteer
computing [3]. It is being used for applications in
physics, molecular biology, medicine, chemistry,

astronomy, climate dynamics, mathematics, and the
study of games. There are currently about 40 BOINC-
based projects and about 400,000 volunteer computers

performing an average of over 400 TeraFLOPS.

1-4244-0910-1/07/$20.00 ©2007 IEEE.

1.1) Projects and volunteers

BOINC projects are independent; each has its own

database of jobs and volunteer accounts. Job durations
vary widely between projects, ranging from a few
minutes to several months (for example,

Climateprediction.net [8]).

Volunteers participate by running BOINC client

software on their computers (hosts). BOINC is open
source and the client is available for most platforms,

including Windows, Linux, and Mac OS X. Volunteers

can attach each host to any set of projects, and can

specify various preferences that constrain when and
how their resources are used. For example, they can

control the allocation of resources among projects.
There are advantages in attaching hosts to multiple

projects. First, a given project may have periods when

it has no work, so a host attached to several projects is
less likely to become idle. Second, such a host may be
able to do use its resource more fully, for example by

downloading files for one project while computing for
another.

1.2) The BOINC architecture

BOINC consists of client and server components
(see Figure 1). The BOINC client runs projects'

applications. The applications are linked with a
runtime system whose functions include process
control, checkpoint control, and graphics [5]. The

client performs CPU scheduling (implemented on top
of the local operating system's scheduler; at the OS
level, BOINC runs applications at zero priority). It

may preempt applications either by suspending them
(and leaving them in memory) or by instructing them to
quit.

All network communication in BOINC is initiated
by the client. A client communicates with a project's
task server [4] via HTTP. The request is an XML

document that includes a description of the host

hardware and availability, a list of completed jobs, and

a request for a certain amount (expressed in terms of
CPU time) of additional work. The reply message
includes a list of new jobs (each described by an XML

element that lists the application, input and output files,

including a set of data servers from which each file
can be downloaded).

Some hosts have intermittent physical network
connections (for example, portable computers or those
with modem connections). Such computers may

connect only every few days. During a period of
network connection, BOINC attempts to download
enough work to keep the computer busy until the next

connection.

Figure 1: The BOINC architecture

1.3) Local scheduling issues

The BOINC client implements two related

scheduling policies:

CPU scheduling: of the currently runnable jobs,
which to run? Of the preempted jobs, which to keep in
memory?

Work fetch: when to ask a project for more work,
which project to ask, and how much work to ask for?

These policies have a large impact on the

performance of BOINC-based projects. They must
deal with changing and uncertain data; for example:

● Project-supplied job completion estimates may be
off by orders of magnitude.

● Users may change preferences at any time. If
resource shares are changed, a feasible workload

can become infeasible.

● Projects may be off-line or have no work available
for long periods (months or years).
The scheduler must do its best (relative to several

often incompatible criteria) in response to changing
situations. This paper describes the issues behind these
problems in detail, discusses the policies currently used

in BOINC, and proposes strategies for improving the
policies.

2. The local scheduling problem

2.1) Inputs to local scheduling

To frame the local scheduling problem in more
detail, we will describe its various inputs.

First, there are the host's hardware characteristics:

number of processors, floating-point and integer
benchmarks, RAM size, and so on. These are
measured periodically by the BOINC client. The client

also tracks various usage characteristics, such as the

active fraction (the fraction of time BOINC is running
and is allowed to do computation), and the statistics of
its network connectivity.

Second, there are user preferences. These include:

● A resource share for each project. The fraction
of a bottleneck resource R devoted to a project P
should be roughly equal to P's resource share

divided by the sum of resource shares of projects
contending for R. Possible bottleneck resources
include disk space, network bandwidth, and CPU

time; only the latter is addressed here.

● Limits on processor usage: whether to compute
while the computer is in use, the maximum number
of CPUs to use, and the maximum fraction of CPU

time to use (to allow users to reduce CPU heat).

● The maximum fraction of RAM to use while the
computer is busy, and the maximum fraction to use
while it's idle.

● ConnectionInterval: the typical time between

periods of network activity. This lets users
provide a “hint” about how often they connect, and
it lets modem users tell BOINC how often they

want it to automatically connect.

● SchedulingInterval: the “time slice” of the BOINC
client CPU scheduler (the default is one hour).

Third, there are various settings and controls

accessed via a graphical interface. For example, users
can suspend and resume BOINC computation in its
entirety, suspend and resume individual projects or

jobs, attach and detach projects, and abort jobs.

Finally, each job has a number of project-specified

parameters, including estimates of its number of
floating-point and integer operations, an estimate of its

maximum working-set size, a deadline by which it

should be reported.

2.2) Job execution

Checkpointing is especially important in volunteer
computing because the BOINC client, or the host, can
be turned off at any time. BOINC's runtime system [5]

lets the client tell applications when to checkpoint
(based on user preferences for disk-access interval) and
informs the client when a checkpoint has been done.

Ideally, applications checkpoint promptly when
BOINC asks them to, but some applications may have
long periods when they can't checkpoint. Some

applications never checkpoint.

BOINC allows applications to report their fraction

done periodically during execution. This information
is used to estimate completion time (see section 3.2)

and is displayed to the user in the GUI and screen-saver
graphics.

2.3) Redundancy and credit

Projects grant credit to users for the computational
work they have contributed. Credit provides a basis for

ranking users and teams, and is an extremely important
incentive.

Volunteer computing participants are anonymous

and untrusted, and the source code of the BOINC client
is publicly available. Malicious participants can easily
alter the client to report erroneous results, or to claim

exaggerated credit for result.

BOINC supports redundant computing to increase
the likelihood that only correct results are accepted and
that credit is granted fairly. This works as follows.

Two or more instances of each job are created and
dispatched to clients. A completed result specifies an

amount of claimed credit (typically based on CPU

time and CPU benchmarks). If both results are
returned before their deadline, and the results agree
(according to project-specified criteria [18]) then the

result is considered correct, and both users receive a

granted credit equal to the minimum of the claimed
credits. This reduces the payoff for claiming more
credit than is deserved.

If the results don't agree, or if one of the results is
not reported by its deadline, the server generates an
additional instance of the job, and sends it to a third

host. This is repeated until a quorum of matching
results is found or a limit on the number of instances is

reached. Then, at some later point, the job's input and

output files are deleted from the server, and eventually
its database record is deleted.

A job instance that is computed correctly and

reported by its deadline is almost certain to be granted
credit. After the deadline passes, however, the chances
of receiving credit decline, and beyond some point the

computation is of no value to the participant (because it
will not be granted credit) or to the project (because it
will not contribute to a quorum).

2.4) Goals and scenarios

The scheduling policies have the following goals, in

order of decreasing importance:

● Maximize the average rate at which the host is
granted credit. To this end, the policies try to

maximize CPU utilization and to avoid missed
deadlines (and to balance these goals when they
conflict).

● Enforce resource shares over the long term (this

must be defined carefully: a project's share should
not include periods when it is down or has no
work).

● Maximize variety: if a host is attached to several

projects with similar resource shares, the scheduler
should avoid long periods (days or weeks) when the
host works for a single project.

The performance of a scheduling policy is relative
to a set of inputs: the hardware characteristics of a

particular host, a set of projects and their jobs, user

preferences, and so on. We call this a scheduling

scenario. Scheduling scenarios can be arbitrarily
complex: inputs can vary over time, projects may go up

and down, job estimates may be wrong, and so on.
In this paper, we will restrict ourselves to very

simple scenarios, of the form shown in Table 1.

ConnectionInterval 12 h

MaxCPUs 1

Projects P1 P2 P3

Resource share 0.4 0.3 0.3

Job length 100 h 6 h 3 h

Job deadline 200 h 12 h 5 h

Table 1: An example scheduling scenario

Such scenarios assume that job length estimates are
exact, each project's jobs are identical, the host is
always running, and projects are always up.

2.7) Early scheduling policies

Early versions of BOINC used the following
policies:

● CPU scheduling: round-robin between projects,
weighted according to their resource share (we call

this policy weighted round robin).

● Work fetch: keep enough work queued to last for

ConnectionInterval, and divide this queue between
projects based on resource share, with each project
always having at least one job running or queued.

These policies work well in some scenarios.
However, there are scenarios in which they fail
disastrously. For example, in the scenario of Table 1,

the jobs of each project will complete in 250, 20, and
10 hours respectively; every job is completed after its
deadline, so (although the CPU is never idle) all the

computing is wasted.
We also considered the use of earliest-deadline-first

(EDF) scheduling [12]. This does only slightly better;

in the scenario of Table 1, some of P3's jobs will be
completed by their deadline, but all jobs of P1 and P2
will miss their deadlines.

3. Local scheduling policies in BOINC

We now describe the local scheduling policies used

in the current version of the BOINC client. These
policies avoid the problems described in the previous
section, and have proven to work well in a wide range

of real-world scheduling scenarios.

3.1) Terminology

A job J is nearly runnable if neither J nor its
project is suspended, and J hasn't finished computing.

A job J is runnable if, in addition, its input files have

been downloaded. A project P is runnable if P has at

least one runnable job; similarly for nearly runnable.

A project is contactable if the client is allowed to
ask it for work (projects may be non-contactable for

various reasons; for example, the client uses
exponential back-off in response to RPC failures). A

project is potentially runnable if it is contactable or

nearly runnable. A project's potentially runnable

resource share is its resource share relative to the set

of potentially runnable projects.

The wall CPU time of a process is the amount of
wall-clock time it has been running at the OS level.

The CPU time may be significantly less, for example if
the process does I/O or paging, or if CPU-intensive
non-BOINC processes run at the same time.

MaxCPUs is the minimum of the user-specified

CPU limit and the actual number of CPUs.

3.2) Job completion time estimation

Client scheduling requires estimates of the
completion time of jobs, both unstarted and in
progress. The more accurate these estimates are, the

better the possible scheduling decisions.
We can estimate the remaining CPU time of an

unstarted job as the estimated number of floating-point

operations (supplied by the project) divided by the
floating-point benchmark of a CPU (measured by the
BOINC client). However, this can give consistently

wrong estimates because either a) the application is
memory-intensive, while BOINC's benchmarks are not;
or b) the application may have been compiled with

more or less optimization than the BOINC client.
BOINC corrects for these factors with a per-project

duration correction factor, an estimate of the ratio of

actual CPU time to originally estimated CPU time. As
will be seen, it is better to err on the high side, so this is
calculated in an asymmetric way; increases are

reflected immediately, but decreases are exponentially
smoothed.

Secondly, a job's completion time depends on its

wall CPU time, which may be much greater than its
CPU time (for example, if the application does lots of
I/O or paging, or if the host typically has other CPU-

intensive processes running). BOINC corrects for this

with a CPU efficiency factor, computed as a smoothed
average of CPU time to wall CPU time.

Finally, many BOINC applications report their

fraction done periodically during execution, and (if the
application developer has implemented it carefully) this
provides a reliable estimate of completion time. The

reliability of an estimate based on fraction done
presumably increases as the job progresses. Hence, for
jobs in progress BOINC uses the estimate

FA + (1-F)B

where F is the fraction done, A is the estimate based on
elapsed CPU time and fraction done, and B is the

estimate based on benchmarks and floating-point count.

3.3) Debt

BOINC's local scheduling policies are based on the

notion of debt. The debt to a project is the amount of
wall CPU time owed to it, relative to other projects.

BOINC uses two types of debt; each is varied over a
set S of projects. In each case, the debt is recalculated
periodically as follows:

WallCPUTime(P) = wall CPU time used by project

P during most recent period
A = sum of WallCPUTime(P) for P in S
R = sum of ResourceShare(P) for P in S

For each project P in S:

W = A*ResourceShare(P) / R

Debt(P) += W – WallCPUTime(P)

Debt(P) is then normalized so that its mean is zero.

Short-term debt is used by the CPU scheduler. It is
varied over the set of runnable projects, and is bounded

so that the maximum short-term debt is no greater than
86,400 (i.e. one day).

Long-term debt is used by the work-fetch policy. It
is varied over the set of potentially runnable projects.

3.4) Simulating weighted round-robin scheduling

The CPU scheduling and work fetch policies use a

simulation of weighted round-robin scheduling applied
to the set of nearly runnable jobs. The simulation takes
into account parameters such as active fraction and

CPU efficiency. It is a continuous approximation, and
doesn't reflect the discrete nature of scheduling or of
host inactivity. It produces the following outputs for

each job J and project P:

● DeadlineMissed(J): whether J misses its deadline.

● DeadlinesMissed(P): the number of jobs J of P for
which DeadlineMissed(J).

● TotalShortfall: the amount of additional work
(measured in CPU time) needed to keep all CPUs

busy for the next ConnectionInterval seconds.

● Shortfall(P): the additional work (measured in
CPU time) for project P needed to keep it from
running short of work in the next

ConnectionInterval seconds.
In the example shown in Figure 2, projects A and B

have resource shares 2 and 1 respectively. A has jobs

A1 and A2, and B has job B1. The computer has two
CPUs. From time 0 to 4 all three jobs run with equal
weighting. At time 4 job A2 finishes. From time 4 to 8,

project A gets only a 0.5 share because it has only one
job. At time 8, job A1 finishes.

Figure 2: Round-robin simulation example

Shortfall(A) (the area of the dark region in Figure
2b) is 4, Shortfall(B) is 0, and TotalShortfall (the area
of the dark region in Figure 2c) is 2.

3.5) CPU scheduling policy

BOINC's CPU scheduler consists of two parts: a job

selection policy that computes a list of jobs that

should ideally run (the run list), and an enforcement

policy that attempts to run these jobs, while possibly
postponing the preemption of jobs that haven't
checkpointed recently (to avoid wasted CPU time).

The job selection policy uses earliest-deadline-first
(EDF) for projects with jobs that are in danger of
missing their deadline, and weighted round-robin

among other projects if additional CPUs exist. This
allows the client to meet deadlines that would
otherwise be missed, while providing variety and

honoring resource shares over the long term. The
policy is:
1. For each project P, set AnticipatedDebt(P) to

ShortTermDebt(P).
2. Let P be the project with the earliest-deadline

runnable job among projects with

DeadlinesMissed(P) > 0. Let J be P's earliest-
deadline runnable job not on the run list.

3. If such a J exists, add J to the run list, decrement

AnticipatedDebt(P) by the expected payoff
(SchedulingInterval/MaxCPUs), and decrement
DeadlinesMissed(P).

4. If there are more CPUs, and projects with
DeadlinesMissed(P) > 0, go to 1.

5. If the size of the run list is MaxCPUs, stop.

6. If a job J is currently running, and has been running
for less than SchedulingInterval, add J to the run
list and go to 5 (this ensure that jobs receive their

full time slice no matter how often the job selection
function runs).

7. Find the project P for which AnticipatedDebt(P) is

greatest, select one of P's runnable jobs (picking
one that is already running, if possible, else the one
received first from the project) and add that job to

the run list.
8. Decrement AnticipatedDebt(P) by the expected

payoff and go to 5.

The job selection function runs when a job is
completed, when the end of the user-specified

scheduling period is reached, when new jobs become
runnable, or when the user performs a UI interaction
(e.g. suspending or resuming a project or job).

The enforcement policy is implemented by a
function that is called by the job selection function at
its conclusion, and whenever a job checkpoints. Let X

be the set of jobs in the run list that are not currently
running, and let Y be the set of running jobs that are
not in the run list. The enforcement policy is as

follows:

1. If DeadlineMissed(J) for some J in X, then preempt

a job in Y, and run J (preempt the job with the least
wall CPU time since checkpoint). Repeat as needed.

2. If there is a job J in Y that has checkpointed since

the last call to this function, preempt J and run a job
in X.

3.6) Work-fetch policy

Returning to the scenario shown in Table 1, we see
that if the host always has at least one job for each
project, it will miss deadlines, regardless of the CPU

scheduling policy. We now describe a work-fetch
policy that fixes this problem.

A project P is overworked if

LongTermDebt(P) < –SchedulingInterval

This condition occurs if P's jobs consistently have
tight deadlines, and are therefore run in EDF mode by
the CPU scheduler.

The work fetch policy function runs periodically,
and whenever an event occurs that could create a need
for more jobs. The function either a) decides to not

fetch work, or b) selects a project P to ask for work,
and decides how many seconds of work to request.
The policy is as follows:

1) Find the project P for which

LongTermDebt(P) – Shortfall(P)

is greatest. Consider projects that are overworked or

that have projected deadline misses only if there is an
idle CPU.

2) If there is such a project P, set its work request to

max(Shortfall(P), TotalShortfall/PRRS)

where PRRS is P's potentially runnable resource share.

In the scenario of Table 1, the system initially
fetches jobs for all three projects. After a brief period
of round-robin CPU scheduling, the system switches to

EDF mode and run only projects 2 and 3. As this
continues, the long-term debts of projects 2 and 3
decrease until they become overworked, at which point

no work is fetched from them. The system reaches a
steady state in which project 1 uses one CPU most of
the time, and either project 2 or 3 has no work queued.

3.7) Memory-aware scheduling

Although they run at the lowest OS priority, BOINC

applications can impact user-visible performance
because of their memory usage. We modified the CPU
scheduling policy to reflect this. Limiting memory

usage reduces the CPU time available to BOINC, and
on some systems BOINC would do no work at all. One
goal of our design is to provide user-adjustable controls

over this trade-off. A second goal is to maximize the
CPU efficiency of BOINC applications; that is, to
ensure that they don't thrash. On a multiprocessor, it

may sometimes be more efficient (in terms of total
CPU time per wall time) to run fewer jobs than the
number of CPUs. A third goal is to support

applications that can trade off memory usage for speed.
Such applications should be made aware of the current
memory constraints, so that they can adapt accordingly.

BOINC periodically measures the working set size
of all running BOINC applications. To accommodate
spikes in memory usage, BOINC smooths the working

set size.
The job selection function computes the available

RAM, based on preferences. In building the run list, it

keeps track of RAM used so far, and skips any task that
would cause this to exceed available RAM.

The enforcement policy computes the available

RAM, based on preferences. While running tasks, it
keeps track of RAM used so far and skips any task that
would cause the limit to be exceeded. It preempts tasks

that haven't checkpointed if they would cause the limit
to be exceeded.

In addition, a function runs every 30 seconds or so

and computes the working sets of all running jobs. If
the total is too large, it triggers CPU scheduler
enforcement (see above). If a job's working set is too

large for it to ever run, it is aborted.
These policies may cause some jobs to not run for

long periods. For example, suppose that

● A 2-CPU machine has 1 GB RAM,

● There's a small-RAM job X with a close deadline

● There's a 1 GB job Y

● There are several small-RAM jobs.

In this case, Y won't run until X has finished, even if

it is more deserving (in terms of debt) than the other
small jobs. However, Y won't starve indefinitely.
Eventually it will run into deadline trouble, at which

point the BOINC CPU scheduler will run it ahead of
the other jobs.

4. Related work

A number of platforms for volunteer computing

have been developed [2, 6, 7, 13, 14, 15]. These
platforms all differ from BOINC in crucial respects
(they are restricted to a single project, or have no job

deadlines, or allow only one queued job at a a time)
and so do not address the scheduling issues described
here.

BOINC's weighted round-robin scheduling is
analogous to fair-shared scheduling in time-sharing
systems [11]. Earliest-deadline-first scheduling and its

optimality properties were described by Liu and
Layland [12]. There is a substantial amount of work
in completion-time estimation and its use for

scheduling [17].
Memory-aware scheduling was introduced and

explored by Agrawala and Bryant [1]. In our work,

however, memory requirements are not known in
advance.

5. Conclusions and future work

We have described the issues involved in local

scheduling for volunteer computing, and have
presented policies that have proven to work well in the
real world. Key aspects of these policies are: 1) the

notion of debt, in its two forms; 2) the use of deadline
scheduling (but only when necessary); and 3) careful
attention to job completion estimation.

Currently, client and server scheduling are not well
integrated. The client asks for N seconds of work, and
the server sends it jobs that can run in available

memory, and that, if started immediately, would finish

by their deadline. However, since the server has no
information about work queued or in progress on the
client, it can send jobs that will cause deadlines to be

missed. To remedy this, we plan to have the client
send information about queued and in-progress work,
including completion time estimates. The server will

use this information to do a deadline-scheduling based
simulation to decide what jobs, if any, can safely be
sent.

Network connection interval is currently a user
preference. Many users are unaware of this preference
or don't set it correctly. We plan to eliminate it by

having the BOINC client record statistics about periods
when the host is powered off or not connected, and
base scheduling decisions on these statistics.

The local scheduling policies currently reflect
memory constraints only after the fact. For example, if
a host has 2 CPUs but only enough RAM to run one

job at a time, BOINC will fetch work on the
assumption that both CPUs will be used, and deadlines
will be missed. This can be fixed – for example, by

modifying the round-robin simulator to reflect
memory-aware scheduling.

We plan to develop a simulation-based framework

in which we can evaluate, compare and study
scheduling policies. Currently we rely on “thought
experiments” and empirical evidence – we make a

change to the scheduler, run it in-house and with alpha
testers, then release it to the 400,000+ BOINC
participants. It is difficult to know if a change has had

the intended effect, and if a change causes a major
problem, it can waste lots of computing power. A
simulation-based testbed would avoid these problems.

The simulator should allow specifying scenarios in
detail: job completion time distributions, checkpointing
patterns, server availability, and so on. More

generally, it should allow the specification of a
distribution of scenarios (perhaps based on observed
hosts and projects), so that one can study the average

performance of scheduling policies, as well as their
performance in particular cases. It should also
accommodate trace-based simulations [16]. Creating

such a simulator will be a formidable effort, but will
yield a powerful tool for improving the efficiency of
volunteer computing.

References

[1] Agrawala, A. K. and Bryant, R. M. “Models of

memory scheduling”. SIGOPS Oper. Syst. Rev. 9, 5
(Nov. 1975), 217-222.

[2] Alexandrov, A.D., M. Ibel, K.E. Schauser, K.E.

Scheiman. “SuperWeb: Research issues in Java-Based
Global Computing”. In Proceedings of the Workshop
on Java for High performance Scientific and

Engineering Computing Simulation and Modelling.
Syracuse University, New York, 1996.

[3] Anderson, D.P. “BOINC: A System for Public-

Resource Computing and Storage”. 5th IEEE/ACM

International Workshop on Grid Computing, pp. 365-

372, Nov. 8 2004, Pittsburgh, PA.

[4] Anderson, D.P., E. Korpela, and R. Walton. "High-

Performance Task Distribution for Volunteer
Computing". 1st IEEE International Conference on e-
Science and Grid Computing, Melbourne, Dec. 2005,

pp. 196-203.

[5] Anderson, D.P., C. Christensen, and B. Allen.

"Designing a Runtime System for Volunteer
Computing", to appear in Supercomputing 06.

[6] Baratloo, A., M. Karaul, Z. Kedem, and P.
Wyckoff. “Charlotte: Metacomputing on the Web”. In
In Proceedings of the 9th Conference on Parallel and

Distributed Computing Systems, 1996.

[7] Chien, A., B. Calder, S. Elbert, and K. Bhatia.

“Entropia: architecture and performance of an
enterprise desktop grid system”, J. Parallel Distrib.
Comput. 63 (2003) 597-610.

[8] Christensen, C., T. Aina, D. Stainforth, “The
Challenge of Volunteer Computing With Lengthy

Climate Modelling Simulations”, Proceedings of the
1st IEEE Conference on e-Science and Grid
Computing, Melbourne, Australia, 5-8 Dec 2005.

[9] Distributed.net, http://distributed.net

[10] GIMPS, http://www.mersenne.org/prime.htm

[11] Henry, G.J. “The Fair Share Scheduler”. Bell Syst.

Tech. J. 63, 8, Part 2 (Oct. 1984), 1845-1857.

[12] Liu, C.L. and J.W. Layland. “Scheduling

algorithms for multiprogramming in a hard-real-time
environment”. Journal of the ACM 20,1 (1973), 46—
61.

[13] Neary, M.O., B.O. Christiansen, P. Capello , K.E.
Schauser, “Javelin: Parallel Computing on the

Internet”, Future Generation Computer Systems 15
(1999) pp 659-674.

[14] Nisan, N., S. London, O. Regev, N. Camiel,

“Globally distributed computation over the Internet---
the POPCORN project”, Proceedings of the
International Conference on Distributed Computing

Systems (ICDCS'98), 1998.

[15] Sarmenta, L.F.G. and S. Hirano. “Bayanihan:

Building and Studying Web-Based Volunteer
Computing Systems Using Java”. Future Generation
Computer Systems, 15(5/6), 1999.

[16] Sherman, S. W. and Browne, J. C. “Trace driven
modeling: Review and overview”. In Proceedings of

the 1st Symposium on Simulation of Computer
Systems (Gaithersburg, Maryland, United States, June
19 - 20, 1973). H. J. Highland, Ed.

[17] Spooner, D.P., S.A. Jarvis, J. Cao, S. Saini and
G.R. Nudd, “Local grid scheduling techniques using

performance prediction”, IEE Proceedings Computers
and Digital Techniques, 150(2), pp. 87-96, 2003.

[18] Taufer, M., D. Anderson, P. Cicotti, C.L. Brooks
III. “Homogeneous Redundancy: a Technique to
Ensure Integrity of Molecular Simulation Results Using

Public Computing”. Heterogeneous Computing
Workshop, International Parallel and Distributed
Processing Symposium 2005, Denver, CO, April 4-8,

2005.

