More quantum chemistry with BOINC

Martin Korth
Theory of Condensed Matter group, Cavendish Laboratory
University of Cambridge

The 6th BOINC Workshop — 01/09/2010
From Chemistry to Quantum Chemistry

Chemistry

- science of composition, properties and changes of matter
- organic (carbon-based) chemistry, biochemistry, ...

Theoretical chemistry

- use of reasoning and computation to predict chemical phenomena
- chemoinformatics, molecular modeling, ...

Quantum Chemistry

- applies quantum mechanics to address problems in chemistry
- prediction of structure and reactivity of atoms and molecules
Quantum Chemistry

Molecular electronic structure theory
- mathematical description of matter at the molecular scale
- based on the (electronic) Schrödinger equation

Hierarchy of general approximations
- pure 'ab initio' quantum mechanical treatment like DFT (QM)
- semiempirical QM treatments like AM1 (SE)
- (classical molecular mechanics treatments like AMBER (MM))

Hierarchy of QM approximations
- Hartree-Fock, post-Hartree Fock methods like MP2
- Density Functional Theory, Jacob’s ladder of approximations
quantum picture

model systems
ab initio methods

molecular mechanics

semi-empirical quantum chemistry

real-life systems

accurate modelling of large systems

classical view

size
Accurate modeling of large systems?

The hybrid QM/MM ansatz

- important inner region is described on QM level
- large outer region described on MM level
- approaches differ in how they combine both descriptions

Existing QM/MM approaches

- based on standard QM (DFT) and MM (force fields) methods
- already very successful in describing the reactivity of biomolecular systems e.g. enzyme catalysis, photosynthesis, ...
Our QM approach: Fixed Node Diffusion Monte Carlo

What?

▶ models the electronic Schrödinger equation ...

\[
\frac{\partial \psi(r, \tau)}{\partial \tau} = \frac{1}{2m} \nabla^2 \psi(r, \tau) - V(r)\psi(r, \tau)
\]

▶ ... as a generalized diffusion process

\[
\frac{\partial c(r, t)}{\partial t} = D \nabla^2 c(r, t) - k(r)c(r, t)
\]

Why?

▶ exact solution within the so-called 'fixed node' approximation
▶ very well suited for parallelization
Our project: Quantum Monte Carlo at home

Already enabled us to find out ...

- ... how to do accurate and reliable FNDMC calculations for important biomolecular model systems like DNA base pairs
- ... how much effort is needed to keep the effects of the 'fixed node' approximation small for the calculation of reaction energies

And will now move on to ...

- ... develop a QM/MM scheme with FNDMC to treat larger QM regions with higher accuracy
- ... calculate reference data for biomolecular systems with relevance in enzyme catalysis
biomolecular model systems

Hydrogen-bond dominated:

Dispersion dominated:

Mixed complexes:
benchmark reaction energies
accurate modeling of larger systems with FNDMC-QM/MM

... work in progress ...
Technical aspects: QMC@HOME’s new sidekick

- QMC and other computational methods for chemistry at the Grimme group, University of Münster (D)

- QMC for solid state physics at the Theory of Condensed Matter group, University of Cambridge (UK)
Technical aspects: Current topics (2010)

Recent

- QuantumFIRE alpha test project for QMC in solid state physics and research into Quantum Foundations
- new main QMC app: CASINO (University of Cambridge, UK)
- additional QMC app: CHAMP (University of Twente, NL)
- new 'Pilot Wave Theory' app: LOUIS

Upcoming

- enable the QMC@HOME screensaver for CASINO
- enable CASINO for GPU computing
Technical aspects: Future plans (2011)

Extending our capabilities

- chemistry apps
 (Density functional theory and semiempirical QM methods)
- solid state physics apps
 (Density functional theory)
- choose open source projects were possible

'Volunteer Chemistry Initiative'

- supply ready-to-go packages for Volunteer Computing with standard chemistry codes including a screensaver framework
- sponsors welcome ...
Acknowledgments

Money

- German National Academy of Sciences Leopoldina, Leopoldina postdoc stipend LPDS 2009-18

People

- Mike Towler (University of Cambridge, UK)
- Stefan Grimme (University of Münster, D)
- Claudia Filippi (University of Twente, NL)