Computing over the Internet: Beyond Embarrassingly Parallel Applications

BOINC Workshop 09
Barcelona

Fernando Costa
Overview

- Motivation

- Computing over Large Datasets

- Supporting new Applications
 - MapReduce over the Internet
 - Scientific Workflows

- Conclusion
Motivation

- Volunteer Computing potential increasing
 - PS3, GPU
 - PCs have increased network and storage capabilities

- Limited to embarrassingly parallel apps
 - Master/worker model

- Limitations/Problems with current model
Motivation - Problems

- Current Projects
 - Centralized architecture
 - Data distribution limitations
 - Storage problems

- Not many new projects
 - HPC stonewalled VC
 - New types of applications needed to reach new projects

Unable to take advantage of VC full potential
Goals

• Apply P2P techniques to solve scalability problems in current Volunteer Computing projects

• Introduce storage layer as support for new computing paradigms and application types
 – Allow new projects to use internet-wide computing

• Provide mechanisms to handle more demanding applications
 – Adapt existing Grid applications
 – Support data-intensive applications
 – Jobs with dependencies
Computing over large Datasets

- Amazon Model
 - Store large datasets for free
 - Clients pay for computation and storage used by their applications

- How to adapt to BOINC?
 - Take advantage of previous work with BitTorrent
Previous Work

- Improve data distribution
- BitTorrent
 - Shared input files
 - Proposal for a Collaborative CDN
- Super-peer organization (P2P-ADICS)
 - Data Centers
 - Data Lookup Service: DHT with volunteers
Computing over large Datasets

• BOINC + BitTorrent library

• Wrapper to set BitTorrent as read-only filesystem

• Use large datasets as inputs

• Possible command sequence:
 – fd = open(tracker, objID)
 – read(fd, buffer, offset, len)
BOINC + BT model

```python
fd = open(tracker, objID)
read(fd, buffer, offset, len)
```
BOINC + BT

• Advantages
 – Easy to implement as first version
 – Allows initial testing to evaluate the solution
 – Possible to add read/write support
 – Next step: large outputs or intermediate results as inputs

• Problem
 – Assumes inter-client communication…
 • Solution: Guarantee that at least N% are accessible (public IP)
 • Communication over UDP – hole punching techniques
 • Turn this into a super-peer scenario?
New Applications on BOINC

- Build over storage layer
 - Leverage direct transfers
 - Export information for applications

- MapReduce over the Internet
 - Wider use, but harder to find application

- Scientific Workflows
 - Not too complex for a VC environment
New Applications - MapReduce

- MapReduce over the Internet
 - Adapt “Hadoop” to internet-wide computing
 - Volunteer Cloud Computing?

- Problems with typical applications…
MapReduce over Internet

- Applications that would fit
 - Lower Communication - Computation ratio
 - Longer running time
 - Lower latency requirements
 - More shared files
 - Volunteer genomic computations?

- MapReduce Workflows

- Separate Dimensions
• New types of applications
 – Data-intensive applications
 • E.g.: Handle CERN data-intensive computations
 – Workflow
 • Extremely variable characteristics: long or short running, data-intensive or compute-intensive
New Applications – Current Work

• Handling new applications
 – Science Workflows

• Volunteer storage system
 – Store intermediate results and final output

• Two alternatives
 – Data stored in all nodes: metadata in central server
 – Chosen nodes act as data centers
Current Work - Cliques

• Clique
 – Complete graph: each peer is connected to every node

• Building the overlay/P2P system
 – Peers replicate data between themselves

• Event-driven Simulator
• **Advantages**
 – More resources; Higher availability; Higher transfer speed;

• **Disadvantages**
 – Connectivity; Security; Upload bandwidth restrictions;

• **New Issues**
 – Accountability
 – Byzantine and selfish/rational behaviour
 – Fault Tolerance
 – Security
 • Authorization
 • Authentication
Supporting New Applications

• **Problem**
 – How to find a suitable application?
 – Current Focus
 • Virtual machines, GPU and multiprocessor applications

• **Build around existing application**
 – Don’t develop system that may never be used…

• **No requests for computing against large datasets or workflow apps**

• **Solution: Collaborations with existing/new projects**
Conclusion

• Current Work
 – Building Volunteer Storage Platform
 • Wrapper to use BT as read-only file system

• Leveraging the Storage Layer
 – Working on simulator that uses Cliques to support workflows
 – MapReduce Paradigm
 – Data-intensive applications
 – Combining with virtualization: Volunteer Cloud Computing?

• Finding partners
 – Research is meaningless unless it is advantageous to SOMEONE