

Using volunteered resources
for data-intensive computing

and storage

David Anderson

Space Sciences Lab
UC Berkeley

10 April 2012

The consumer digital infrastructure

Consumer
● 1.5 billion PCs

– GPU-equipped
– paid for by owner

● 5 billion mobile
devices

● Commodity Internet

Organizational
● 2 million cluster/cloud

nodes (no GPUs)
● supercomputers
● Research networks

Volunteer computing

home PC

BOINC
client

scheduler

project

data server

scheduler

data server

get jobs

download data,
executables

compute

upload outputs

● Clients can be attached to multiple projects

Volunteer computing status

● 700,000 active PCs
– 50% with usable GPUs

● 12 PetaFLOPS actual throughput
● Projects

– CAS@home
– IBM World Community Grid
– Einstein@home
– ... 50 others

Data-intensive computing

● Examples
– LHC experiments
– Square Kilometer Array
– Genetic analysis
– Storage of simulation results

● Performance issues
– network
– storage space on clients

Networking landscape

Commodity
Internet

PCs
~10 Mbps

Institutions
1-10 Gbps

Research
networks
(free)

$$
$

● Most PCs are behind NATs/firewalls
– only use outgoing HTTP

Disk space on clients

● Current
– average 50 GB available per client
– 35 PetaBytes total

● Trends
– disk sizes increasing exponentially, faster than

processors
– 1 TB * 1M clients = 1 Exabyte

Properties of clients

● Availability
– hosts may be turned off
– hosts may be unavailable by user preference

● time of day
● PC is busy or not busy

● Churn
– The active life of hosts follows an exponential

distribution with mean ~100 days
● Heterogeneity

– wide range of hardware/software properties

BOINC storage architecture

Data archivalApplications
Locality scheduling

Dataset storage

BOINC storage
infrastructure

BOINC storage infrastructure:
managing client space

● Volunteer preference: keep at least X% free

● This determines BOINC’s total allocation
● Allocation among projects is based on

volunteer-specified “resource share”

Non-BOINC free BOINC

BOINC storage infrastructure:
file management

home PC

BOINC
client

scheduler

project

scheduler

application-
specific logic

Project disk usage
Project disk share
List of sticky files

Files to delete
Files to upload
Files to download

● “Sticky file” mechanism

Storage applications

● Temporary storage of simulation results
● Dataset storage
● Locality scheduling
● Data archival

Temporary storage of simulation
results

● Many simulations (HEP, molecular, climate,
cosmic) produce small “final state” file, large
“trajectory” file.

● Depending on contents of final state file,
scientist may want to examine the trajectory file

● Implementation
– make trajectory files sticky, non-uploaded
– interface for uploading trajectory files
– Interface for retiring trajectory files

Dataset storage

● Goal:
– submit queries against a dataset cached on

clients (main copy is on server)
– Minimize turnaround time for queries

● Scheduling policies
– whether to use a given host
– how much data to store on a given host

● should be proportional to its processing speed
– update these decisions as hosts come and go

Locality scheduling

● Have a large dataset
● Each file in the dataset is input for a large

number of jobs
● Goal: process the dataset using the least

network traffic
● Example: Einstein@home analysis of LIGO

gravity-wave detector data

Locality scheduling

● Processing jobs sequentially is pessimal
– every file gets sent to every client

jobs jobs
. . .

PCs

Locality scheduling: ideal

● Each file is downloaded to 1 host
● Problems

– Typically need job replication
– Widely variable host throughput

jobs jobs

PCs

jobs jobs

Locality scheduling: actual

● New hosts are assigned to slowest time
● Teams are merged when they collide
● Each file is downloaded to ~10 hosts

jobs jobs

teams

jobs jobs

Data archival

● Files originate on server
● Chunks of files are stored on clients
● Files can be reconstructed on server (with high

latency)
● Goals:

– arbitrarily high reliability (99.999)
– support large files

How to achieve reliability?

● Replication
– Divide file into N chunks
– Store each chunk on M clients
– If a client fails

● upload another replica to server
● download to a new client

. . .
N

M = 2

Problems with replication

● Hard to achieve high reliability
 C = probability of losing a particular chunk
 F = probability of losing some chunk

 F = 1 - (1-C)N

 0.36 = 1 – (1-0.0001)1000

● High space overhead
– use Mx space to store an x-byte file

Reed-Solomon Coding

● A way of dividing a file into N+K chunks

● The original file can be reconstructed from any
N of these chunks.

● Example: N=40, K=20
– can tolerate simultaneous failure of 20 clients
– space overhead is only 50%

N = 4 K = 2

The problem with coding

● When any chunk fails, need to upload all other
chunks to server

● High network load at server
● High transient disk usage at server

Reducing coding overhead

● Only need to upload 1/M of file on failure

M

Two-level coding

● Can tolerate K2 client failures
● Space overhead: 125%

M

Two-level coding + replication

● Most recoveries involve only 1 chunk
● Space overhead: 250%

M

M = 2

Volunteer storage simulator

● Predicts the performance of coding/replication
policies

● Inputs:
– description of host population
– policy, file size

● Outputs:
– disk usage at server
– upload/download traffic at server
– fault tolerance level

Implementation status

● Storage infrastructure: done (in 7.0 client)
● Storage applications:

– Data archival: 1-2 months away
– Locality scheduling:

● used by Einstein@home, but need to
reimplement

– Others: in design stage

Conclusion

● Volunteer computing can be data-intensive
– With 200K clients, could handle the work of all

LHC Tier 1 and 2 sites
– In 2020, can potentially provide Square

Kilometer Array (1 Exabyte/day) with 100X
more storage than on-site resources

● Using coding and replication, we can efficiently
transform a large # of unreliable storage nodes
into a highly reliable storage service

Future work

● How to handle multiple competing storage
applications within a project?

● How to grant credit for storage?
– how to make it cheat-proof?

● How to integrate peer-to-peer file distribution
mechanisms

– Bittorrent, Attic

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

