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The consumer digital infrastructure

Consumer
● 1.5 billion PCs

– GPU-equipped
– paid for by owner

● 5 billion mobile 
devices

● Commodity Internet

Organizational
● 2 million cluster/cloud 

nodes (no GPUs)
● supercomputers
● Research networks



  

Volunteer computing

home PC

BOINC
client

scheduler

project

data server

scheduler

data server

get jobs

download data,
executables

compute

upload outputs

● Clients can be attached to multiple projects



  

Volunteer computing status

● 700,000 active PCs
– 50% with usable GPUs

● 12 PetaFLOPS actual throughput
● Projects

– CAS@home
– IBM World Community Grid
– Einstein@home
– ... 50 others



  

Data-intensive computing

● Examples
– LHC experiments
– Square Kilometer Array
– Genetic analysis
– Storage of simulation results

● Performance issues
– network
– storage space on clients



  

Networking landscape

Commodity
Internet

PCs
~10 Mbps

Institutions
1-10 Gbps

Research
networks
(free)

$$
$

● Most PCs are behind NATs/firewalls
– only use outgoing HTTP



  

Disk space on clients

● Current
– average 50 GB available per client
– 35 PetaBytes total

● Trends
– disk sizes increasing exponentially, faster than 

processors
– 1 TB * 1M clients = 1 Exabyte



  

Properties of clients

● Availability
– hosts may be turned off
– hosts may be unavailable by user preference

● time of day
● PC is busy or not busy

● Churn
– The active life of hosts follows an exponential 

distribution with mean ~100 days
● Heterogeneity

– wide range of hardware/software properties



  

BOINC storage architecture

Data archivalApplications
Locality scheduling

Dataset storage

BOINC storage
infrastructure



  

BOINC storage infrastructure:
managing client space

● Volunteer preference: keep at least X% free

● This determines BOINC’s total allocation
● Allocation among projects is based on 

volunteer-specified “resource share”

Non-BOINC free BOINC



  

BOINC storage infrastructure:
file management

home PC

BOINC
client

scheduler

project

scheduler

application-
specific logic

Project disk usage
Project disk share
List of sticky files

Files to delete
Files to upload
Files to download

● “Sticky file” mechanism



  

Storage applications

● Temporary storage of simulation results
● Dataset storage
● Locality scheduling
● Data archival



  

Temporary storage of simulation 
results

● Many simulations (HEP, molecular, climate, 
cosmic) produce small “final state” file, large 
“trajectory” file.

● Depending on contents of final state file, 
scientist may want to examine the trajectory file

● Implementation
– make trajectory files sticky, non-uploaded
– interface for uploading trajectory files
– Interface for retiring trajectory files



  

Dataset storage

● Goal:
– submit queries against a dataset cached on 

clients (main copy is on server)
– Minimize turnaround time for queries

● Scheduling policies
– whether to use a given host
– how much data to store on a given host

● should be proportional to its processing speed
– update these decisions as hosts come and go



  

Locality scheduling

● Have a large dataset
● Each file in the dataset is input for a large 

number of jobs
● Goal: process the dataset using the least 

network traffic
● Example: Einstein@home analysis of LIGO 

gravity-wave detector data



  

Locality scheduling

● Processing jobs sequentially is pessimal
– every file gets sent to every client

jobs jobs
. . .

PCs



  

Locality scheduling: ideal

● Each file is downloaded to 1 host
● Problems

– Typically need job replication
– Widely variable host throughput

jobs jobs

PCs

jobs jobs



  

Locality scheduling: actual

● New hosts are assigned to slowest time
● Teams are merged when they collide
● Each file is downloaded to ~10 hosts

jobs jobs

teams

jobs jobs



  

Data archival

● Files originate on server
● Chunks of files are stored on clients
● Files can be reconstructed on server (with high 

latency)
● Goals:

– arbitrarily high reliability (99.999)
– support large files



  

How to achieve reliability?

● Replication
– Divide file into N chunks
– Store each chunk on M clients
– If a client fails

● upload another replica to server
● download to a new client

. . .
N

M = 2



  

Problems with replication

● Hard to achieve high reliability
    C = probability of losing a particular chunk
    F = probability of losing some chunk

    F = 1 - (1-C)N

    0.36 = 1 – (1-0.0001)1000

● High space overhead
– use Mx space to store an x-byte file



  

Reed-Solomon Coding

● A way of dividing a file into N+K chunks

● The original file can be reconstructed from any 
N of these chunks.

● Example: N=40, K=20
– can tolerate simultaneous failure of 20 clients
– space overhead is only 50%

N = 4 K = 2



  

The problem with coding

● When any chunk fails, need to upload all other 
chunks to server

● High network load at server
● High transient disk usage at server



  

Reducing coding overhead

● Only need to upload 1/M of file on failure

M



  

Two-level coding

● Can tolerate K2 client failures
● Space overhead: 125%

M



  

Two-level coding + replication

● Most recoveries involve only 1 chunk
● Space overhead: 250%

M

M = 2



  

Volunteer storage simulator

● Predicts the performance of coding/replication 
policies

● Inputs:
– description of host population
– policy, file size

● Outputs:
– disk usage at server
– upload/download traffic at server
– fault tolerance level



  

Implementation status

● Storage infrastructure: done (in 7.0 client)
● Storage applications:

– Data archival: 1-2 months away
– Locality scheduling:

● used by Einstein@home, but need to 
reimplement

– Others: in design stage



  

Conclusion

● Volunteer computing can be data-intensive
– With 200K clients, could handle the work of all 

LHC Tier 1 and 2 sites
– In 2020, can potentially provide Square 

Kilometer Array (1 Exabyte/day) with 100X 
more storage than on-site resources

● Using coding and replication, we can efficiently 
transform a large # of unreliable storage nodes 
into a highly reliable storage service



  

Future work

● How to handle multiple competing storage 
applications within a project?

● How to grant credit for storage?
– how to make it cheat-proof?

● How to integrate peer-to-peer file distribution 
mechanisms

– Bittorrent, Attic
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