
Emulating Volunteer Computing Scheduling Policies

David P. Anderson

University of California, Berkeley

davea@ssl.berkeley.edu

Abstract

Volunteer computing systems such as BOINC use

several interacting scheduling policies, which must

address multiple requirements across a large space of

usage scenarios. In developing BOINC, we need to

design and optimize these policies without direct

access to the target nodes (volunteered PCs). To do

this, we developed an emulation-based system that

predicts the policies’ behavior in specific scenarios.

This system has been useful in the design and

evaluation of policies, in software development, and in

the resolution of problems occurring in the field.

1. Introduction

The consumer digital infrastructure (CDI) consists of

mass-market devices (such as desktop, laptop and

tablet computers, game consoles, and smart phones)

and the communication networks that connect them.

The CDI currently includes over 1 billion privately-

owned PCs and 100 million GPUs capable of general-

purpose computing, with a total computing capability

of at least 20 ExaFLOPS, and on the order of 10

Exabytes of free disk space accessible via 1 Petabit/s of

network bandwidth.

The CDI can be used for high-performance scientific

computing by allowing computer owners to donate

computing resources to research projects; this is called

volunteer computing. BOINC [1] is the leading

software platform for volunteer computing. The

BOINC server software allows scientists to create

projects, each of which operates a server that

dispatches jobs. Using the BOINC client software,

volunteers can attach their computers to one or more

projects. Currently there are about 50 projects and

500,000 volunteered computers, providing over 5

PetaFLOPS of computing throughput.

Because many clients are behind NATs or firewalls,

BOINC is “pull-based”: all communication is initiated

by the client. The client typically queues multiple jobs,

perhaps from different projects. Hence scheduling in

BOINC consists of three interacting components:

client job scheduling (deciding which jobs to execute

at a given point), client job fetch (deciding when and

from where to request new jobs), and job dispatch (the

server-side selection of jobs to send in response to a

client request).

These scheduling policies are critical to BOINC.

Poorly-performing or incorrectly implemented policies

can reduce system throughput; equally importantly,

they can frustrate and demotivate volunteers, possibly

causing them to stop volunteering. Developing and

evaluating policies, however, is made difficult by the

unique properties of volunteer computing:

• The volunteered computers vary widely on many

scheduling-related axes: hardware, availability,

number and properties of attached projects, and so on.

A combination of these factors is called a scenario.

Scheduling policies should perform well across the

entire population of scenarios.

• The volunteer computers are not directly accessible

to BOINC software developers. We are not able to

deploy new software on these computers, or log in to

them.

• The scenario on a particular volunteer computer

may be essentially impossible to reproduce on a

BOINC development computer.

Historically, BOINC development has relied on a

group of about 200 volunteer “alpha testers” who

monitor the actions of their BOINC clients,

communicate problems via email or message boards,

and are willing to run experimental versions of the

client. Alpha testers sample both central and extreme

areas of the scenario distribution – some have multiple

GPU boards, some attach to many projects, and so on.

Thus, if alpha testers report no problems from a

BOINC client with a given set of policies, we have

some confidence that policies will perform well over

most of the actual population of scenarios.

This approach, however, has significant limitations.

For example, when an alpha tester reports a

scheduling-related problem, it can be difficult to obtain

information, such as trace message logs, needed to

understand and fix the problem. In addition, the alpha-

test approach doesn’t help us design scheduling

policies for hypothetical situations in which, for

example, the GPU/CPU speed disparity is greatly

increased, or projects have much tighter latency

requirements.

To address these issues, we developed a new way of

studying BOINC scheduling policies. The system

revolves around a BOINC client emulator (BCE) – a

program that takes as input a description of a usage

scenario, emulates (using the actual BOINC client

code) the behavior of the client over some period of

time, and calculates various performance metrics. An

earlier version of BCE, which did not handle GPUs or

multi-thread jobs, is described in [6].

We created a system in which volunteers can run BCE

by pasting their BOINC client state files into a web

form. Hence, when an alpha tester notices a bug or

anomaly, they can, in many cases, reproduce it using

BCE, and report it (together with their state files) to

BOINC developers, who can then examine the problem

under a debugger and fix it easily.

This paper describes the current BOINC scheduling

policies, and several variants of each policy. We then

describe BCE, and give some examples of its use to

evaluate the policy variants.

2. Background

2.1 Attachment and resource share

A volunteer can attach each of their computers to any

set of BOINC-based projects. Each attachment has a

volunteer-specified resource share indicating the

fraction of the computer’s available resources that

should be allocated to the project.

Each computer has processors of various processor

types (currently CPU, NVIDIA GPU, and ATI GPU).

There may be multiple instances of each type. Some

computers have both NVIDIA and ATI GPUs.

Each project supplies clients with jobs that may use

various combinations of the host’s computing

resources. The types of jobs supplied by a project may

change over time, and there may be periods when a

given project has no jobs available.

Resource share is intended apply to a host’s aggregate

processing resources, not to the processor types

separately. For example, suppose a host has a 10

GFLOPS CPU and a 20 GFLOPS GPU. Suppose that

the host is attached to projects A and B with equal

resource shares, and that project A has both GPU and

CPU applications, while project B has only GPU

applications. In this case project A should be allocated

100% of the CPU and 25% of the GPU, while project

B should be allocated 75% of the GPU (see Figure 1).

Figure 1: A project’s resource share applies to the

host’s combined processing resources. In this

example, projects A and B, with equal resource shares,

each get 15 GFLOPS.

The notion of resource share is not precisely defined;

for example, the time scale over which the ratio should

apply is not specified; nor is the question of whether a

project’s share continue to accrue when it has no jobs

available.

2.2 Hosts and preferences

The BOINC client probes and measures each host’s

hardware characteristics: the number and floating-point

speed of its CPUs and GPUs, the size of its main

memory and video RAM, and so on.

The behavior of the BOINC client on a given host is

governed by a set of user-specified preferences.

These indicate, for example, whether CPU and/or GPU

computing should be done while the computer is in

use, time-of-day limits on computing, limits on

memory and disk usage, and so on.

On a given computer, BOINC is able to compute only

when a) the computer is powered on and BOINC is

running, and b) computing is allowed by the

preferences. The BOINC client maintains basic

availability data: the recent-average fraction of time

when computing is allowed, when GPU computing is

allowed, and when the computer is connected to the

Internet.

2.3 Jobs

The properties of a BOINC job J include:

GPU A

CPU A

B

20 GFLOPS0 10

• The number of CPUs J will use (typically the

number of CPU-intensive threads). This may be

fractional.

• For each GPU type, the number of instances J will

use. This may be fractional, meaning that J will use at

most that fraction of the GPU’s cores and memory. If

J uses a GPU, we call it a GPU job; otherwise we call

it a CPU job.

• The expected run time on the host.

• A latency bound that determines a deadline for

completion of the job: the local deadline is the time

when the job is dispatched to the host plus the latency

bound. If the deadline is missed, the server will issue

another instance of the job.

Almost all BOINC-based applications do regular

checkpointing, so that they can exit and resume with

minimal overhead. This study includes only such

applications.

3. Scheduling policies in BOINC

Scheduling in BOINC involves interacting client and

server policies. The client maintains a queue of jobs,

and at any given point runs some of them on the host’s

hardware (more precisely, it runs them on the host’s

operating system, which may do its own scheduling).

The client periodically issues scheduler RPCs to the

job dispatchers of attached projects. Each RPC can

report completed jobs and request new jobs.

3.1 Resource share accounting

The client policies require a way of deciding whether

each project P has used too much or too little resource

relative to its resource share SHARE(P). This

determines priorities PRIOsched(P, T) and PRIOfetch(P)

that are used for job scheduling for processor type T

and job fetch respectively. We have used two

approaches to this:

Local accounting: for each processor type T and each

project P, the client maintains a “debt” D(P, T), which

is incremented at a rate proportional to SHARE(P) and

decremented as P uses resources of type T. PRIOsched(P,

T) is D(P, T); PRIOfetch(P) is the sum of D(P, T),

weighted by the peak FLOPS of T.

Global accounting: the client maintains REC(P), an

exponentially-weighted recent average of the peak

FLOPS (including all processor types) used by each

project P. PRIOsched(P, T) and PRIOfetch(P) are both

SHARE(P) – REC(P).

3.2 Round-robin simulation

The BOINC client’s baseline job scheduling policy

is weighted round-robin (WRR); “weighted” means

that projects are allocated time slices in proportion to

their resource share. BOINC’s client scheduling

policies use round-robin simulation to predict the

behavior of the system under WRR. The simulation is

approximate: instead of modeling individual time-

slices, it uses a continuous approximation. The outputs

of the simulator are as follows (see figure 2):

• Whether each job will meet its deadline. Jobs that

are projected to miss their deadline are called

deadline-endangered.

• For each processor type T, the length of time

SAT(T) that T is saturated (that is, all its instances are

busy).

• For each processor type T, the number

SHORTFALL(T) of idle instance-seconds within the

maximum queue interval (see section 3.4).

Figure 2: The round-robin simulator predicts how

long each processor instance will be busy given the

current workload.

3.3 Client job scheduling policies

Given a set of runnable jobs, this policy determines

which jobs to run. The BOINC client does job

scheduling by starting, suspending, and killing jobs.

The default policy is as follows. First, the scheduler

does round-robin simulation as described above. The

scheduler then builds an ordered job list. Jobs are

selected in order of PRIOsched(P, T). Deadline-

endangered jobs have precedence over others, and

GPU jobs have precedence over CPU jobs. Running

jobs that have not checkpointed yet have precedence

over all others.

The scheduler then scans the ordered job list, running

jobs and preempting others. Jobs are skipped if total

memory usage would exceed the limit, or if GPUs

cannot be allocated. The scan stops when CPUs and

GPUs are fully utilized.

In section 4, we compare the following variant

policies:

JS-LOCAL: the baseline policy with local accounting.

JS-GLOBAL: the baseline policy with global

accounting.

JS-WRR: a variant of JS-LOCAL with WRR only

(deadlines are not used).

3.4 Client job fetch policy

This policy determines when to issue a scheduler RPC

requesting jobs, which project to contact, and how

much work to request. For each processor type T, a

scheduler RPC request message includes:

instances(T): the client requests sufficient jobs to use

this many instances of T, typically because that number

of instances are currently idle

secs(T): the client requests sufficient jobs to use this

many instance-seconds.

The job fetch policy has two queue-size parameters:

min_queue: the client attempts to maintain enough

jobs to keep all processors busy for this period of time.

Typically this reflects the duration of periods when the

client is unable to fetch new jobs, for example because

it is not connected to the Internet.

max_queue: if the client has enough jobs to keep a

processor type T busy for this many seconds, it

shouldn’t get more jobs for T.

Currently these parameters are user preferences; in

principle they could be derived from availability traces.

We compared the following job-fetch policies:

JF_ORIG: if, for a given processor type T,

SHORTFALL(T) > 0, then let P be the project with

jobs of type T for which PRIOfetch(P) is greatest.

Request X*SHORTFALL(T) instance-seconds, where

X is the fractional resource share of P among projects

with jobs of type T.

JF_HYSTERESIS: if, for a processor type T, SAT(T)

< min_secs, then let P be the project with jobs of type

T for which PRIOfetch(P) is greatest. Request

SHORTFALL(T) instance-seconds.

The main distinctions are that 1) JF_HYSTERESIS

uses hysteresis, and 2) it asks a single project for the

entire shortfall rather than dividing it among projects.

4. Evaluating scheduling policies

4.1 Scenarios

The BOINC client runs on about 500,000 computers .

Each computer constitutes a “scenario” in which the

scheduling policies operate. These scenario have many

properties:

• The host’s hardware characteristics (number and

speed of processors, memory and disk sizes).

• The host availability: Hosts have widely differing

availability patterns: some are available all the time,

others are available periodically or randomly.

• The number of attached projects (possibly

hundreds) and their resource shares.

• For each attached project, the lengths of its jobs

(which may vary from minutes to months) and their

slack time.

• For each attached project, the computer resources

used by its jobs. This may include various

combinations of CPUs and GPUs (multiple and/or

fractional), and may change over time.

• The availability of projects: some projects are

sporadically down for maintenance, or have no jobs.

• Errors (random or systematic) in a priori job

runtime estimates.

Ideally, we would like BOINC’s scheduling policies to

perform well for all possible combinations of these

properties. In practice, we want the policies to perform

well for as much of population of actual scenarios as

possible.

4.2 Figures of merit

We evaluate scheduling policies according to several

figures of merit:

Idle fraction: the fraction of processing capacity (as

measured by peak FLOPS of all processor types) that

was idle during the emulation period.

Wasted fraction: the fraction of processing capacity

(as measured by peak FLOPS) that was used for jobs

that did not complete by their deadline.

Resource share violation: the RMS over projects P of

the difference between P’s share of processing

resources and the amount it actually received.

Monotony: a measure of the extent to which the

system ran jobs of a single project for long periods

(such behavior is undesirable for many volunteers).

RPCs per job: the average number of RPCs per job.

The lower this is, the less load is placed on project

servers.

Each quantity is scaled to lie in [0, 1], where 0 is good

and 1 is bad.

The performance metrics conflict; in general we cannot

minimize them simultaneously. The overall evaluation

of a policy is a subjectively-weighted combination of

the metrics.

4.3 The BOINC client emulator

The BOINC client emulator (BCE) takes as input a

scenario description and a set of flags selecting the job

scheduling, job fetch, and server deadline-check

policies. It simulates the behavior of the client in that

scenario for a given time period, and reports the

resulting values for the figures of merit listed above. It

also generates a “time-line” visualization of processor

usage, and a message log detailing the scheduling

decisions.

BCE uses a mix of emulation and simulation. The

implementation of job scheduling, job fetch, and

preference enforcement uses the same source code as

the BOINC client. In terms of scheduling, BCE

reproduces the exact behavior of the client; hence it

“emulates” the client.

Other components of the system are simulated: a) job

execution is simulated, and run times are normally

distributed; b) host availability is modeled as a random

process in which available and unavailable periods

have exponentially distributed lengths; c) BOINC

schedulers are simulated with a simplified model.

We developed a controller script that does multiple

BCE runs and generates graphs summarizing the

figures of merit. For example, it can compare

scheduling policies across one or more scenarios, or do

a parameter sweep over a scenario parameter.

In addition, we developed a web interface to BCE

(http://boinc.berkeley.edu/sim_form.php), with the

goal of allowing alpha testers to submit scenarios to

BOINC developers. When alpha testers see a

scheduling-related problem, they can upload their

BOINC client state files through this interface, and

verify that they see the same problem in BCE. The

input files are saved on the server. They then report

the problem to BOINC developers, who can then

investigate the problem in a controlled, reproducible

environment, without further involvement of the tester.

5. Emulation results

We used the BCE to compare the scheduling policies

described in section 3. We used the following

scenarios:

Scenario 1: CPU only, two projects.

Scenario 2: 4 CPUs and 1 GPU. GPU is 10X faster

than one CPU. Two projects, one with CPU jobs, one

with both.

Scenario 3: CPU only. Two projects, one with very

long low-slack jobs.

Scenario 4: CPU and GPU. Twenty projects with

varying job types.

Unless otherwise specified, the simulation period is 10

days.

5.1 Job scheduling: use of EDF

To study the effect of using EDF scheduling for

deadline-endangered jobs, we compared JS-WRR to

JS-GLOBAL. In scenario 1, we varied the slack time

of project 1. The job runtime is 1000s, and we varied

the latency bound from 1000s to 2000s. The results are

shown in figure 3.

Figure 3: A job-scheduling policy that incorporates

deadlines wastes less processing time.

With zero slack, neither policy can meet the deadlines

for project 1, so half the processing is wasted. For

larger slack times, JS-LOCAL has significantly lower

wasted time because it gives priority to deadline-

endangered jobs.

5.2 Job scheduling: local/global policies

To study the effect of local and global resource-share

accounting, we compared JS-LOCAL and JS-

GLOBAL in scenario 2. The results are shown in

figure 4.

Figure 4: A resource-share accounting policy that

spans processor types reduces resource share

violation

JS_LOCAL divides CPU time evenly between the 2

projects, while JS_GLOBAL devotes all the CPU time

to project 1; the latter policy respects resource share as

much as possible while still maximizing throughput.

5.3 Job fetch: hysteresis

To study the value of hysteresis, we compared JF-

ORIG and JF-HYSTERESIS in scenario 4. The results

are shown in figure 5.

Figure 5: A job-fetch policy with hysteresis reduces

the number of scheduler RPCs.

Because a typical scheduler RPC fetches multiple jobs,

WF_HYST reduces the number of scheduler RPCs in

this case. Monotony increases because each RPC

fetches multiple jobs, and as a result the client may

have jobs from only one project for some periods.

5.4 Long low-slack jobs

We studied a particular scenario (scenario 3) in which

project 1 has long (million-second) low-slack jobs.

These jobs are immediately deadline-endangered,

forcing the client to run them to the exclusion of other

jobs. Project 2 has normal jobs.

We studied JS-REC in this scenario, and varied the

half-life parameter A used in averaging REC. The

results are shown in figure 6.

Figure 6: In a scenario with long low-slack jobs,

credit estimate half-life affects resource share

violation.

When A is small, the system has a short memory: after

a project 1 job completes, the system quickly forgets

that project 1 has exceeded its resource share, and as a

result share violation is high. Increasing A to several

times the long job size reduces this effect.

6. Discussion and conclusion

6.1 Related work

This work is an extension of the work of Kondo et al.

[6], in which an emulator was used to study BOINC

client scheduling policies. The earlier system did not

model GPU or multithread jobs; the policies studied in

the current work were developed to handle such jobs.

Mutka [7] did a simulation-based study of policies for

scheduling jobs with deadlines on a Condor-based

desktop grid; Rood and Lewis [8] did a similar study

that sought to minimize average makespan. This

context differs from ours because, for example,

BOINC jobs do not have an overall deadline, BOINC

has no provision for migrating jobs between hosts, and

BOINC handles coprocessors.

Estrada et al. [4] used the emulation approach to study

server-side scheduling policies in BOINC. Their

system, EmBOINC, used a simulator (driven by either

traces or by an analytic model) of a dynamic

population of volunteer hosts, and used emulation of

the BOINC server. It complements the current work.

6.2 Future work

This work can be extended in a number of directions:

• Characterize the actual population of scenarios, and

develop a system, perhaps based on Monte-Carlo

sampling, to study policies over the entire population.

• Study other policy alternatives. Over the last few

years, scores of policy changes have been proposed,

primarily on the BOINC alpha-testing and

development email lists. Many of these merit study.

• Study multiprocessor scheduling policies other than

earliest-deadline-first (EDF). EDF is optimal for

uniprocessors but not multiprocessors. Although

optimal scheduling for multiprocessors is NP-

complete, there are heuristics that perform better than

EDF in many cases [3].

• Increase system throughput by enforcing resource

share across a volunteer’s hosts, rather than for each

host separately. For example, if a particular host is

well-suited to a particular project, it could run only

that project, and the difference could be made up on

other hosts. Bertin et al. [2] have proposed a system

that, in effect, optimally enforces resource share across

multiple volunteers.

• Take application memory usage into account. The

presence of memory-intensive applications may have a

significant impact; for example, it may be possible to

use only a single processor instance at times.

• Model file transfers. Jobs are assumed to be

runnable immediately after dispatch. For data-

intensive applications (those with large input or output

files) this is not a realistic assumption. It would be

important to model an additional scheduling policy:

the order in which files are uploaded and downloaded.

• Simulate scheduler behavior more realistically, for

example by emulating it as has been done in

EmBOINC [4].

• Model project unavailability and the sporadic

availability of particular types of jobs (for example,

GPU jobs).

• Model applications that checkpoint infrequently or

never.

• Model inaccurate job runtime estimates.

6.2 Conclusion

We created an emulation-based system for predicting

the behavior and performance of the BOINC client in a

wide range of usage scenarios. This system has been

extremely valuable, both for studying scheduling

policies and for debugging the system. In particular,

we concluded that in some scenarios:

• EDF scheduling reduces wasted processing.

• Global resource-share accounting reduces share

violation.

• Job-fetch hysteresis reduces the number of

scheduler RPCs per job.

• In scenarios with long jobs, a longer averaging

half-life reduces resource share violation.

We believe that the emulation approach would be

useful in the development of any distributed system

where usage scenarios cannot easily be duplicated on

development machines. The initial effort in factoring

the software to allow emulation, and in developing the

emulator, is offset by more efficient development and

debugging, and by a resulting system that performs

better and is more robust.

References

[1] David P. Anderson. BOINC: A System for

Public-Resource Computing and Storage. 5th

IEEE/ACM International Workshop on Grid

Computing, November 8, 2004, Pittsburgh, USA, pp.

1-7.

[2] Remi Bertin, Arnaud Legrand, Corinne

Touati. Toward a Fully Decentralized Algorithm for

Multiple Bag-of-tasks Application Scheduling on

Grids. IEEE/ACM International Conference on Grid

Computing (Grid), Tsukuba, Japan, 2008.

[3] Dell'Amico, Silvano Martello. Optimal

Scheduling of Tasks on Identical Parallel Processors.

ORSA Journal on Computing, Vol. 7, No. 2. (1

January 1995), pp. 191-200.

[4] Trilce Estrada, Michela Taufer, David

Anderson. Performance Prediction and Analysis of

BOINC Projects: An Empirical Study with EmBOINC.

Journal of Grid Computing 7(4) Dec. 2009, p. 537-554.

[5] Bahman Javadi, Derrick Kondo, Jean-Marc

Vincent, and David P. Anderson. Discovering

Statistical Models of Availability in Large Distributed

Systems: An Empirical Study of SETI@home. To

appear, Transactions on Parallel and Distributed

Systems.

[6] D. Kondo, D.P. Anderson, and J. McLeod

VII. Performance Evaluation of Scheduling Policies for

Volunteer Computing. 3rd IEEE International

Conference on e-Science and Grid Computing,

Bangalore, India, 10-13 December 2007.

[7] M. W. Mutka, Considering Deadline

Constraints When Allocating the Shared Capacity of

Private Workstations, International Journal of

Computer Simulation, vol. 4, no. 1, pp. 41-63 1994.

[8] Brent Rood and Michael J. Lewis.

Scheduling on the Grid via Multi-State Resource

Availability Prediction, 9th Grid Computing

Conference, 2008.

