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Abstract

Volunteer computing systems such as BOINC use

several  interacting  scheduling  policies,  which  must

address multiple requirements across a large space of

usage scenarios.   In  developing BOINC, we need to

design  and  optimize  these  policies  without  direct

access to the target nodes (volunteered PCs).   To do

this,  we  developed  an  emulation-based  system  that

predicts  the policies’  behavior  in  specific  scenarios.

This  system  has  been  useful  in  the  design  and

evaluation of policies, in software development, and in

the resolution of problems occurring in the field.

1.  Introduction

The consumer digital  infrastructure (CDI) consists  of

mass-market  devices  (such  as  desktop,  laptop  and

tablet  computers,  game  consoles,  and  smart  phones)

and  the  communication  networks  that  connect  them.

The  CDI  currently  includes  over  1  billion privately-

owned PCs and 100 million GPUs capable of general-

purpose computing, with a total computing capability

of  at  least  20  ExaFLOPS,  and  on  the  order  of  10

Exabytes of free disk space accessible via 1 Petabit/s of

network bandwidth. 

The CDI can be used for high-performance scientific

computing  by  allowing  computer  owners  to  donate

computing resources to research projects; this is called

volunteer  computing.   BOINC  [1]  is  the  leading

software  platform  for  volunteer  computing.   The

BOINC  server  software  allows  scientists  to  create

projects,  each  of  which  operates a  server  that

dispatches  jobs.   Using  the  BOINC client  software,

volunteers can  attach their computers to one or more

projects.   Currently  there  are  about  50  projects  and

500,000  volunteered  computers,  providing  over  5

PetaFLOPS of computing throughput.

Because  many clients  are  behind  NATs or firewalls,

BOINC is “pull-based”: all communication is initiated

by the client.  The client typically queues multiple jobs,

perhaps from different projects.  Hence scheduling in

BOINC  consists  of  three  interacting  components:

client job scheduling (deciding which jobs to execute

at a given point),  client job fetch (deciding when and

from where to request new jobs), and job dispatch (the

server-side selection of jobs to send in response to a

client request).

These  scheduling  policies  are  critical  to  BOINC.

Poorly-performing or incorrectly implemented policies

can  reduce  system  throughput;  equally  importantly,

they can frustrate and demotivate volunteers, possibly

causing  them to  stop  volunteering.   Developing  and

evaluating policies, however,  is made difficult by the

unique properties of volunteer computing:

• The volunteered computers  vary widely  on many

scheduling-related  axes:  hardware,  availability,

number and properties of attached projects, and so on.

A combination  of these  factors is  called a  scenario.

Scheduling  policies  should  perform  well  across  the

entire population of scenarios.

• The volunteer computers are not directly accessible

to BOINC software  developers.   We are not  able to

deploy new software on these computers, or log in to

them.

• The  scenario  on  a  particular  volunteer  computer

may  be  essentially  impossible  to  reproduce  on  a

BOINC development computer.

Historically,  BOINC  development  has  relied  on  a

group  of  about  200  volunteer  “alpha  testers”  who

monitor  the  actions  of  their  BOINC  clients,

communicate  problems via  email  or message boards,

and  are  willing  to  run  experimental  versions  of  the

client.  Alpha testers sample both central and extreme

areas of the scenario distribution – some have multiple

GPU boards, some attach to many projects, and so on.

Thus,  if  alpha  testers  report  no  problems  from  a

BOINC client  with  a  given  set  of policies,  we  have

some confidence that  policies will  perform well  over

most of the actual population of scenarios.

This  approach,  however,  has  significant  limitations.

For  example,  when  an  alpha  tester  reports  a

scheduling-related problem, it can be difficult to obtain

information,  such  as  trace  message  logs,  needed  to



understand and fix the problem.  In addition, the alpha-

test  approach  doesn’t  help  us  design  scheduling

policies  for  hypothetical  situations  in  which,  for

example,  the  GPU/CPU  speed  disparity  is  greatly

increased,  or  projects  have  much  tighter  latency

requirements.

To address these issues,  we developed a new way of

studying  BOINC  scheduling  policies.   The  system

revolves around a BOINC client emulator (BCE) – a

program that  takes  as input  a  description of a  usage

scenario,  emulates  (using  the  actual  BOINC  client

code) the behavior of the client over some period of

time, and calculates various performance metrics.  An

earlier version of BCE, which did not handle GPUs or

multi-thread jobs, is described in [6].

We created a system in which volunteers can run BCE

by pasting their  BOINC client  state  files  into  a  web

form.   Hence, when  an alpha tester notices a  bug or

anomaly, they can, in many cases, reproduce it using

BCE, and report it  (together  with  their  state  files)  to

BOINC developers, who can then examine the problem

under a debugger and fix it easily.

This  paper  describes  the  current  BOINC  scheduling

policies, and several variants of each policy.  We then

describe  BCE, and give some examples of its  use to

evaluate the policy variants.

2.  Background

2.1  Attachment and resource share

A volunteer can attach each of their computers to any

set of BOINC-based projects.  Each attachment has a

volunteer-specified  resource  share indicating  the

fraction  of  the  computer’s  available  resources  that

should be allocated to the project.

Each  computer  has  processors  of  various  processor

types (currently CPU, NVIDIA GPU, and ATI GPU).

There may be multiple instances of each type.  Some

computers have both NVIDIA and ATI GPUs.

Each project supplies  clients  with  jobs that  may use

various  combinations  of  the  host’s  computing

resources.  The types of jobs supplied by a project may

change  over  time,  and  there may be periods  when  a

given project has no jobs available.

Resource share is intended apply to a host’s aggregate

processing  resources,  not  to  the  processor  types

separately.   For  example,  suppose  a  host  has  a  10

GFLOPS CPU and a 20 GFLOPS GPU.  Suppose that

the  host  is  attached  to  projects  A and  B with  equal

resource shares, and that project A has both GPU and

CPU  applications,  while  project  B  has  only  GPU

applications.  In this case project A should be allocated

100% of the CPU and 25% of the GPU, while project

B should be allocated 75% of the GPU (see Figure 1).

Figure  1:  A project’s  resource  share  applies  to  the

host’s  combined  processing  resources.   In  this

example, projects A and B, with equal resource shares,

each get 15 GFLOPS.

The notion of resource share is not precisely defined;

for example, the time scale over which the ratio should

apply is not specified; nor is the question of whether a

project’s share continue to accrue when it has no jobs

available.

2.2  Hosts and preferences

The  BOINC client  probes  and  measures  each  host’s

hardware characteristics: the number and floating-point

speed  of  its  CPUs  and  GPUs,  the  size  of  its  main

memory and video RAM, and so on.

The behavior of the BOINC client on a given host is

governed  by  a  set  of  user-specified  preferences.

These indicate, for example, whether CPU and/or GPU

computing  should  be  done  while  the  computer  is  in

use,  time-of-day  limits  on  computing,  limits  on

memory and disk usage, and so on.

On a given computer, BOINC is able to compute only

when  a)  the  computer  is  powered  on and  BOINC is

running,  and  b)  computing  is  allowed  by  the

preferences.   The  BOINC  client  maintains  basic

availability  data:  the  recent-average  fraction  of  time

when computing is allowed, when GPU computing is

allowed,  and when the  computer  is  connected to  the

Internet.

2.3  Jobs

The properties of a BOINC job J include:

GPU A

CPU A

B
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• The  number  of  CPUs  J  will  use  (typically  the

number  of  CPU-intensive  threads).   This  may  be

fractional.

• For each GPU type, the number of instances J will

use.  This may be fractional, meaning that J will use at

most that fraction of the GPU’s cores and memory.  If

J uses a GPU, we call it a GPU job; otherwise we call

it a CPU job.

• The expected run time on the host.

• A  latency  bound that  determines  a  deadline  for

completion of the  job: the local  deadline  is  the  time

when the job is dispatched to the host plus the latency

bound.  If the deadline is missed, the server will issue

another instance of the job.

Almost  all  BOINC-based  applications  do  regular

checkpointing, so that they can exit and resume with

minimal  overhead.   This  study  includes  only  such

applications.

3.  Scheduling policies in BOINC

Scheduling in BOINC involves  interacting client  and

server policies.  The client maintains a queue of jobs,

and at any given point runs some of them on the host’s

hardware (more precisely,  it  runs them on the host’s

operating system, which may do its own scheduling).

The client periodically issues  scheduler RPCs to the

job dispatchers  of  attached  projects.   Each RPC can

report completed jobs and request new jobs.

3.1  Resource share accounting

The client policies require a way of deciding whether

each project P has used too much or too little resource

relative  to  its  resource  share  SHARE(P).   This

determines  priorities  PRIOsched(P,  T)  and  PRIOfetch(P)

that are used for job scheduling for processor type T

and  job  fetch  respectively.  We  have  used  two

approaches to this:

Local accounting: for each processor type T and each

project P, the client maintains a “debt” D(P, T), which

is incremented at a rate proportional to SHARE(P) and

decremented as P uses resources of type T. PRIOsched(P,

T)  is  D(P,  T);  PRIOfetch(P)  is  the  sum  of  D(P,  T),

weighted by the peak FLOPS of T.

Global  accounting:  the  client  maintains  REC(P),  an

exponentially-weighted  recent  average  of  the  peak

FLOPS (including  all  processor  types)  used  by each

project  P.   PRIOsched(P,  T)  and  PRIOfetch(P)  are  both

SHARE(P) – REC(P).

3.2  Round-robin simulation

The BOINC client’s baseline job scheduling policy

is  weighted round-robin  (WRR); “weighted”  means

that projects are allocated time slices in proportion to

their  resource  share.   BOINC’s  client  scheduling

policies  use  round-robin  simulation to  predict  the

behavior of the system under WRR.  The simulation is

approximate:  instead  of  modeling  individual  time-

slices, it uses a continuous approximation.  The outputs

of the simulator are as follows (see figure 2):

• Whether each job will meet its deadline.  Jobs that

are  projected  to  miss  their  deadline  are  called

deadline-endangered.

• For  each  processor  type  T,  the  length  of  time

SAT(T) that T is saturated (that is, all its instances are

busy).

• For  each  processor  type  T,  the  number

SHORTFALL(T) of  idle  instance-seconds  within  the

maximum queue interval (see section 3.4).

Figure  2:  The  round-robin  simulator  predicts  how

long each processor instance will  be busy given the

current workload.

3.3  Client job scheduling policies

Given  a  set  of  runnable  jobs,  this  policy determines

which  jobs  to  run.   The  BOINC  client  does  job

scheduling by starting, suspending, and killing jobs.

The default policy is as follows.  First, the scheduler

does round-robin simulation as described above.  The

scheduler  then builds  an  ordered job list.   Jobs are

selected  in  order  of  PRIOsched(P,  T).  Deadline-

endangered  jobs  have  precedence  over  others,  and

GPU jobs have precedence over CPU jobs.  Running

jobs that  have not  checkpointed yet  have precedence

over all others.

The scheduler then scans the ordered job list, running

jobs and preempting others.  Jobs are skipped if total

memory  usage  would  exceed  the  limit,  or  if  GPUs



cannot be allocated.  The scan stops when CPUs and

GPUs are fully utilized.

In  section  4,  we  compare  the  following  variant

policies:

JS-LOCAL: the baseline policy with local accounting.

JS-GLOBAL:  the  baseline  policy  with  global

accounting.

JS-WRR:  a  variant  of  JS-LOCAL  with  WRR  only

(deadlines are not used).

3.4  Client job fetch policy

This policy determines when to issue a scheduler RPC

requesting  jobs,  which  project  to  contact,  and  how

much work to request.  For each processor type T, a

scheduler RPC request message includes:

instances(T): the client requests sufficient jobs to use

this many instances of T, typically because that number

of instances are currently idle

secs(T): the client requests sufficient  jobs to use this

many instance-seconds.

The job fetch policy has two queue-size parameters:

min_queue: the  client  attempts  to  maintain  enough

jobs to keep all processors busy for this period of time.

Typically this reflects the duration of periods when the

client is unable to fetch new jobs, for example because

it is not connected to the Internet.

max_queue:  if  the client  has  enough  jobs to  keep a

processor  type  T  busy  for  this  many  seconds,  it

shouldn’t get more jobs for T.

Currently  these  parameters  are  user  preferences;  in

principle they could be derived from availability traces.

We compared the following job-fetch policies:

JF_ORIG:  if,  for  a  given  processor  type  T,

SHORTFALL(T) > 0, then let  P be the  project  with

jobs  of  type  T  for  which  PRIOfetch(P)  is  greatest.

Request  X*SHORTFALL(T) instance-seconds,  where

X is the fractional resource share of P among projects

with jobs of type T.

JF_HYSTERESIS: if, for a processor type T, SAT(T)

< min_secs, then let P be the project with jobs of type

T  for  which  PRIOfetch(P)  is  greatest.   Request

SHORTFALL(T) instance-seconds.

The  main  distinctions  are  that  1)  JF_HYSTERESIS

uses hysteresis, and 2) it asks a single project for the

entire shortfall rather than dividing it among projects.

4.  Evaluating scheduling policies

4.1  Scenarios

The BOINC client runs on about 500,000 computers .

Each computer  constitutes  a “scenario”  in which  the

scheduling policies operate.  These scenario have many

properties:

• The  host’s  hardware  characteristics  (number  and

speed of processors, memory and disk sizes).

• The host availability:  Hosts have widely differing

availability  patterns:  some  are available  all  the  time,

others are available periodically or randomly.

• The  number  of  attached  projects  (possibly

hundreds) and their resource shares.

• For  each attached  project,  the  lengths  of  its  jobs

(which may vary from minutes  to months) and their

slack time.

• For each attached project, the computer resources

used  by  its  jobs.   This  may  include  various

combinations  of  CPUs  and  GPUs  (multiple  and/or

fractional), and may change over time.

• The  availability  of  projects:  some  projects  are

sporadically down for maintenance, or have no jobs.

• Errors  (random  or  systematic)  in  a  priori job

runtime estimates.

Ideally, we would like BOINC’s scheduling policies to

perform  well  for  all  possible  combinations  of  these

properties.  In practice, we want the policies to perform

well for as much of population of actual scenarios as

possible.

4.2  Figures of merit

We evaluate  scheduling policies according to several

figures of merit:

Idle fraction:  the fraction of processing capacity (as

measured by peak FLOPS of all processor types) that

was idle during the emulation period.



Wasted fraction:  the  fraction of processing capacity

(as measured by peak FLOPS) that was used for jobs

that did not complete by their deadline.

Resource share violation: the RMS over projects P of

the  difference  between  P’s  share  of  processing

resources and the amount it actually received.

Monotony:  a  measure  of  the  extent  to  which  the

system ran jobs of  a  single  project  for  long periods

(such behavior is undesirable for many volunteers).

RPCs per job: the average number of RPCs per job.

The lower  this  is,  the  less  load  is  placed  on project

servers.

Each quantity is scaled to lie in [0, 1], where 0 is good

and 1 is bad.

The performance metrics conflict; in general we cannot

minimize them simultaneously.  The overall evaluation

of a policy is a subjectively-weighted combination of

the metrics.

4.3  The BOINC client emulator

The  BOINC client emulator (BCE) takes as input a

scenario description and a set of flags selecting the job

scheduling,  job  fetch,  and  server  deadline-check

policies.  It simulates the behavior of the client in that

scenario  for  a  given  time  period,  and  reports  the

resulting values for the figures of merit listed above.  It

also generates a “time-line” visualization of processor

usage,  and  a  message  log  detailing  the  scheduling

decisions.

BCE uses  a  mix  of  emulation  and  simulation.   The

implementation  of  job  scheduling,  job  fetch,  and

preference enforcement uses the same source code as

the  BOINC  client.   In  terms  of  scheduling,  BCE

reproduces  the  exact  behavior  of the  client;  hence  it

“emulates” the client.

Other components of the system are simulated: a) job

execution  is  simulated,  and  run  times  are  normally

distributed; b) host availability is modeled as a random

process  in  which  available  and  unavailable  periods

have  exponentially  distributed  lengths;  c)  BOINC

schedulers are simulated with a simplified model.

We  developed  a  controller  script  that  does  multiple

BCE  runs  and  generates  graphs  summarizing  the

figures  of  merit.   For  example,  it  can  compare

scheduling policies across one or more scenarios, or do

a parameter sweep over a scenario parameter.

In  addition,  we  developed  a  web  interface  to  BCE

(http://boinc.berkeley.edu/sim_form.php),  with  the

goal  of  allowing  alpha testers to  submit  scenarios  to

BOINC  developers.   When  alpha  testers  see  a

scheduling-related  problem,  they  can  upload  their

BOINC  client  state  files  through  this  interface,  and

verify that  they see the same problem in BCE.  The

input files are saved on the server.  They then report

the  problem  to  BOINC  developers,  who  can  then

investigate  the  problem in  a  controlled,  reproducible

environment, without further involvement of the tester.

5.  Emulation results

We used the BCE to compare the scheduling policies

described  in  section  3.   We  used  the  following

scenarios:

Scenario 1: CPU only, two projects.

Scenario 2: 4 CPUs and 1 GPU.  GPU is 10X faster

than one CPU.  Two projects, one with CPU jobs, one

with both.

Scenario 3: CPU only.  Two projects, one with very

long low-slack jobs.

Scenario  4:  CPU  and  GPU.   Twenty  projects  with

varying job types.

Unless otherwise specified, the simulation period is 10

days.

5.1  Job scheduling: use of EDF

To  study  the  effect  of  using  EDF  scheduling  for

deadline-endangered  jobs,  we  compared  JS-WRR  to

JS-GLOBAL.  In scenario 1, we varied the slack time

of project 1.  The job runtime is 1000s, and we varied

the latency bound from 1000s to 2000s.  The results are

shown in figure 3.



Figure  3:  A job-scheduling  policy  that  incorporates

deadlines wastes less processing time.

With zero slack, neither policy can meet the deadlines

for  project  1,  so  half  the  processing  is  wasted.   For

larger slack times, JS-LOCAL has significantly lower

wasted  time  because  it  gives  priority  to  deadline-

endangered jobs.

5.2  Job scheduling: local/global policies

To study the effect of local and global resource-share

accounting,  we  compared  JS-LOCAL  and  JS-

GLOBAL  in  scenario  2.   The  results  are  shown  in

figure 4.

Figure  4:  A  resource-share  accounting  policy  that

spans  processor  types  reduces  resource  share

violation

JS_LOCAL divides  CPU time  evenly  between  the  2

projects, while JS_GLOBAL devotes all the CPU time

to project 1; the latter policy respects resource share as

much as possible while still maximizing throughput.

5.3  Job fetch: hysteresis

To  study  the  value  of  hysteresis,  we  compared  JF-

ORIG and JF-HYSTERESIS in scenario 4.  The results

are shown in figure 5.

Figure  5:  A job-fetch policy with  hysteresis  reduces

the number of scheduler RPCs.

Because a typical scheduler RPC fetches multiple jobs,

WF_HYST reduces the number of scheduler RPCs in

this  case.   Monotony  increases  because  each  RPC

fetches  multiple  jobs,  and  as  a  result  the  client  may

have jobs from only one project for some periods.

5.4  Long low-slack jobs

We studied a particular scenario (scenario 3) in which

project  1  has  long  (million-second)  low-slack  jobs.

These  jobs  are  immediately  deadline-endangered,

forcing the client to run them to the exclusion of other

jobs.  Project 2 has normal jobs.

We studied  JS-REC in  this  scenario,  and  varied  the

half-life  parameter  A  used  in  averaging  REC.   The

results are shown in figure 6.



Figure  6:  In  a  scenario  with  long  low-slack  jobs,

credit  estimate  half-life  affects  resource  share

violation.

When A is small, the system has a short memory: after

a project 1 job completes, the system quickly forgets

that project 1 has exceeded its resource share, and as a

result share violation is high.  Increasing A to several

times the long job size reduces this effect.

6.  Discussion and conclusion

6.1  Related work

This work is an extension of the work of Kondo et al.

[6],  in which an emulator was  used to study BOINC

client scheduling policies.  The earlier system did not

model GPU or multithread jobs; the policies studied in

the current work were developed to handle such jobs.

Mutka [7] did a simulation-based study of policies for

scheduling  jobs  with  deadlines  on  a  Condor-based

desktop grid; Rood and Lewis [8] did a similar study

that  sought  to  minimize  average  makespan.   This

context  differs  from  ours  because,  for  example,

BOINC jobs do not have an overall deadline,  BOINC

has no provision for migrating jobs between hosts, and

BOINC handles coprocessors.

Estrada et al. [4] used the emulation approach to study

server-side  scheduling  policies  in  BOINC.   Their

system, EmBOINC, used a simulator (driven by either

traces  or  by  an  analytic  model)  of  a  dynamic

population of volunteer  hosts,  and used emulation of

the BOINC server.  It complements the current work.

6.2  Future work

This work can be extended in a number of directions:

• Characterize the actual population of scenarios, and

develop  a  system,  perhaps  based  on  Monte-Carlo

sampling, to study policies over the entire population.

• Study other policy alternatives.  Over the last few

years,  scores of policy changes have been proposed,

primarily  on  the  BOINC  alpha-testing  and

development email lists.  Many of these merit study.

• Study multiprocessor scheduling policies other than

earliest-deadline-first  (EDF).   EDF  is  optimal  for

uniprocessors  but  not  multiprocessors.   Although

optimal  scheduling  for  multiprocessors  is  NP-

complete, there are heuristics that perform better than

EDF in many cases [3].

• Increase system throughput  by enforcing resource

share across a volunteer’s hosts,  rather than for each

host  separately.   For  example,  if  a particular  host  is

well-suited  to  a  particular  project,  it  could  run  only

that project, and the difference could be made up on

other hosts.  Bertin  et al. [2] have proposed a system

that, in effect, optimally enforces resource share across

multiple volunteers.

• Take application memory usage into account.  The

presence of memory-intensive applications may have a

significant impact; for example, it may be possible to

use only a single processor instance at times.

• Model  file  transfers.   Jobs  are  assumed  to  be

runnable  immediately  after  dispatch.   For  data-

intensive applications (those with large input or output

files)  this  is not a realistic  assumption.   It would be

important  to  model  an  additional  scheduling  policy:

the order in which files are uploaded and downloaded.

• Simulate scheduler  behavior more realistically, for

example  by  emulating  it  as  has  been  done  in

EmBOINC [4]. 

• Model  project  unavailability  and  the  sporadic

availability  of particular  types  of jobs  (for  example,

GPU jobs).

• Model applications that checkpoint infrequently or

never.

• Model inaccurate job runtime estimates.

6.2  Conclusion

We created an emulation-based system for predicting

the behavior and performance of the BOINC client in a

wide range of usage scenarios.  This system has been

extremely  valuable,  both  for  studying  scheduling

policies and for debugging the system.  In particular,

we concluded that in some scenarios:

• EDF scheduling reduces wasted processing.



• Global  resource-share  accounting  reduces  share

violation.

• Job-fetch  hysteresis  reduces  the  number  of

scheduler RPCs per job.

• In  scenarios  with  long  jobs,  a  longer  averaging

half-life reduces resource share violation.

We  believe   that  the  emulation  approach  would  be

useful  in  the  development  of  any  distributed  system

where usage scenarios cannot easily be duplicated on

development machines.  The initial effort in factoring

the software to allow emulation, and in developing the

emulator, is offset by more efficient development and

debugging,  and  by  a  resulting  system  that  performs

better and is more robust.
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