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High-performance computing

Computers continue to get faster exponentially, but the computational demands of science are growing 
even faster.  Extreme requirements arise in several areas:

• Physical simulation.  Scientists use computers to simulate physical reality at many levels of 
scale: molecule, organism, ecosystem, planet, galaxy, universe.  The models are typically 
chaotic, and studying the distribution of outcomes requires lots of simulation runs with 
perturbed initial conditions.

• Compute-intensive analysis of large data.  Modern instruments (optical and radio telescopes, 
gene sequencers, gravitational wave detectors, particle colliders) produce huge amounts of data, 
which in many cases requires compute-intensive analysis.

• Biology-inspired algorithms such as genetic and flocking algorithms for function optimization.

These areas engender computational tasks that would take hundreds or thousands of years to complete 
on a single PC.  Reducing this to a feasible interval – days or weeks – requires high-performance 
computing (HPC).  One approach is to build an extremely fast computer – a supercomputer. 
However, in the areas listed above, the rate of job completion, rather than the turnaround time of 
individual jobs, is the important performance metric.  This subset of HPC is called high-throughput 
computing.

To achieve high throughput, the use of distributed computing, in which jobs are run on networked 
computers, is often more cost-effective than supercomputing.  There are many approaches to 
distributed computing:

• Cluster computing, which uses dedicated computers in a single location.
• Desktop grid computing, in which desktop PCs within an organization (such as a department 

or university) are used as a computing resource.  Jobs are run at low priority, or while the PCs 
are not being otherwise used.

• Grid computing, in which separate organizations agree to share their computing resources 
(supercomputers, clusters, and/or desktop grids).

• Cloud computing, in which a company sells access to computers on a pay-as-you-go basis.
• Volunteer computing, which is like desktop grid computing except that the computing 

resources are volunteered by the public.

Each of these paradigms has an associated resource pool: the computers in a machine room, the 
computers owned by a university, the computers owned by a cloud provider.  In the case of volunteer 
computing, the resource pool is the set of all privately-owned PCs in the world.  This pool is interesting 
for several reasons:

• It dwarfs the other pools: the number of privately-owned PCs is currently 1 billion and is 



projected to grow to 2 billion by 2015.
• The pool is self-financing, self-updating and self-maintaining: people buy new PCs, upgrade 

system software, maintain their computers, and pay their electric bills.
• Consumer PCs, not special-purpose computers, are state of the art.  Consumer markets drive 

research and development.  For example, the fastest processors today are GPUs developed for 
computer games.  Traditional HPC is scrambling to use GPUs, but there are already 100 million 
GPUs in the public pool, and tens of thousands are already being used for volunteer computing.

The history of volunteer computing

In the mid-1990s, as consumer PCs became powerful and millions of them were connected to the 
Internet, the idea of using them for distributed computing arose.  The first two projects were launched 
in 1996 and 1997:  GIMPS finds prime numbers of a particular type, and distributed.net breaks 
cryptosystems via brute-force search of the key space.  They attracted tens of thousands of volunteers 
and demonstrated the feasibility of volunteer computing.

In 1999 two new projects were launched: SETI@home, from U.C. Berkeley, analyzes data from the 
Arecibo radio telescope, looking for synthetic signals from space.  Folding@home, from Stanford, 
studies how proteins are formed from gene sequences.  These projects received significant media 
coverage and moved volunteer computing into the awareness of the global public.

These projects all developed their own middleware: the application-independent machinery
for distributing jobs to volunteer computers and for running jobs unobtrusively on these computers,
as well as web interfaces by which volunteers could register, communicate with other volunteers, and 
track their progress.  Few scientists had the resources or skills to develop such software, and so for 
several years there were no new projects.

In 2002, with funding from the National Science Foundation, the BOINC project was established to 
develop general-purpose middleware for volunteer computing, making it easier and cheaper for 
scientists to use volunteer computing.  The first BOINC-based projects launched in 2004, and today 
there about 60 such projects, in a wide range of scientific areas.  Some of the larger projects include 
Milkyway@home (from Rensellaer Polytechnic Institute; studies galactic structure), Einstein@home 
(from Univ. of Wisconsin and Max Planck Institute; searches for gravitational waves), Rosetta@home 
(from Univ. of Washington; studies proteins of biomedical importance), ClimatePrediction.net (from 
Oxford University; studies long-term climate change), and IBM World Community Grid (operated by 
IBM; hosts 5-10 humanitarian applications from various academic institutions).

Evaluating volunteer computing

Volunteer computing can be compared with other high-performance computing paradigms in several 
dimensions:

Performance: about 900,000 computers are actively participating in volunteer computing.  Together 
they supply about 10 PetaFLOPS (trillion floating-point operations per second) of computing power; 
the fraction supplied by GPUs is about 70% and growing.  For comparison, the fastest supercomputer 
supplies about 1.4 PetaFLOPS, and the largest grids number in the tens of thousands of hosts.  So in 



terms of throughput, volunteer computing is competitive with other paradigms, and it has the near-term 
potential to greatly surpass them:  if participation increases to 4 million computers, each with a 1 
TeraFLOPS GPU (the speed of current high-end models) and computing 25% of the time, the result 
will be 1 ExaFLOPS of computing power; other paradigms are projected to reach this level only in a 
decade or more.  Actually, since 4 million PCs is only 0.4% of the resource pool, the near-term 
potential of volunteer computing goes well beyond Exa-scale.

Cost effectiveness: for scientists, volunteer computing is cheaper than other paradigms – often 
dramatically so.  A medium-scale project (10,000 computers, 100 TeraFLOPS) can be run using a 
single server computer and one or two staff – roughly $200,000 per year.  An equivalent CPU cluster 
costs at least an order of magnitude more.  Cloud computing is even more expensive.  For example, 
Amazon Elastic Computing Cloud instances provide 2 GigaFLOPS and cost $2.40 per day.  To attain 
100 TeraFLOPS, 50,000 instances would be needed, costing $43.8 million per year.  (However, studies 
suggest that cloud computing is cost-effective for hosting volunteer computing project servers.)

Resource allocation policy and public outreach: In traditional HPC paradigms, resources are 
allocated by bureaucracies: funding agencies, institutions, and committees.  The public, although it 
pays for the resources, has no direct voice in their allocation, and doesn’t know how they’re being used. 
In volunteer computing, the public has direct control over how resources are allocated, and knows what 
they’re being used for.  As a result, public awareness of science is increased, and research projects that 
are outside of the current academic mainstream can potentially get significant computing resources.

Scientific adoption: volunteer computing has not yet been widely adopted: 60 research groups are 
currently using volunteer computing, while perhaps a hundred times that many could benefit from it. 
Cluster and grid computing are much more widely used by scientists.  The HPC community, on whom 
scientists rely for guidance, has ignored volunteer computing, perhaps because it offers neither control 
nor funding.  In addition, although BOINC has reduced the barrier to entry, few research groups have 
the resources and skills needed to operate a project.  The most promising solution to this is to create 
umbrella projects serving multiple scientists and operated at a higher organizational level (for 
example, at the level of a university).

Energy efficiency: the FLOP/Watt ratio of a PC is lower than that of a supercomputer, and it is 
tempting to conclude that volunteer computing is less energy-efficient than supercomputing.  However, 
this is not necessarily the case.  In cold climates, for example, energy used by a PC may replace energy 
used by a space heater, to which the PC is thermodynamically equivalent.  No study has been done 
taking such factors into account.

The BOINC project/volunteer model

The BOINC software consists of two parts:
• Server software that is used by to create projects.  Anyone – academic researchers, hobbyists, 

malicious hackers – can create a project.  Projects are independent; each one operates its own 
server and provides its own web site.  BOINC has no centralized component other than a web 
site from which its software can be downloaded.

• Client software that volunteers install and run on their computers.  The client software is 
available for all major platforms, including Windows, Linux, and Mac OS X.



Having installed the client program, volunteers can then attach it to any set of projects, and for each 
project can assign a resource share that determines how the computer’s resources are divided among 
the projects.

The choice of projects is up to the volunteer.  Attaching to a project allows it to run arbitrary 
executables on one’s computer, and BOINC provides only limited (account-based) sandboxing.  So the 
volunteer must assess the project’s authenticity, its technical competence, and its scientific merit.  The 
ownership of intellectual property resulting from the project may also be a factor.

BOINC encourages volunteers to participate in multiple projects simultaneously.  By doing so, they 
avoid having their computer go idle if one project is down.  Multiple attachment also helps projects 
whose supply of work is sporadic.

More generally, by making it easy to join and leave projects, BOINC encourages volunteers to 
occasionally evaluate the set of available projects, and to devote their computing resources to that 
projects that, in their view, are doing the most important and best research.

BOINC does accounting if credit – a numerical measure of a volunteer’s contribution to a project.  The 
accumulation of a large amount of credit in a particular project can be a disincentive to try other 
projects.  To combat this, BOINC provides a cross-project notion of identity (based on the volunteer’s 
email address).  Each project exports its credit statistics as XML files, and various third-party credit 
statistics sites import these files and display cross-project credit: that is,  the volunteer’s total credit 
across all projects.

Even with the modest number (60) of current projects, the process of locating them, reading their web 
sites, and attaching to a chosen set is a tedious process, and will become infeasible if the number of 
projects grows to hundreds or thousands.

BOINC provides a framework for dealing with this problem.  A level of indirection can be placed 
between client and projects.  Instead of being attached directly to projects, the client can be attached to 
a web service called an account manager.  The client periodically communicates with the account 
manager, passing it account credentials and receiving a list of projects to attach to.

This framework has been used by third-party developers to create “one-stop shopping” web sites, 
where volunteers can read summaries of all existing BOINC projects and can attach to a set of them by 
checking boxes.  The framework could also be used for delegation of project selection, analogous to 
mutual funds.  For example, volunteers wanting to support cancer research could attach to an American 
Cancer Society account manager.  ACS experts would select a dynamic weighted “portfolio” of 
meritorious cancer-related volunteer projects.

Human factors in volunteer computing

All HPC paradigms involve human factors, but in volunteer computing these factors are particularly 
crucial and complex.  To begin with, why do people volunteer?  This question is currently being studied 
rigorously.  Evidence suggests that there are several motivational factors:

• Support for scientific goals: some volunteers want to further a particular research goal (such as 



curing diseases, finding extraterrestrial life, or predicting climate change).
• Community: some volunteers enjoy participating in the on-line communities and social 

networks that form, through message boards and other web features, around volunteer 
computing projects.

• Credit: some volunteers are interested in the performance of computer systems, and use 
volunteer computing to quantify and publicize the performance of their computers.

There have been attempts to commercialize volunteer computing by paying participants, directly or via 
a lottery, and reselling the computing power.  These efforts have failed because the potential buyers, 
such as pharmaceutical companies, are unwilling to have their data on computers outside of their 
control.

To attract and retain volunteers, a project must perform a variety of human functions.  It must develop 
web content describing its research goals, methods, and credentials; it must provide volunteers with 
periodic updates (via web or email) on its scientific progress; it must manage the moderation of its web 
site’s message boards to ensure that they remain positive and useful; it must publicize itself by 
whatever media are available (mass media, alumni magazines, blogs, social networking sites).

Volunteers must trust projects, but projects cannot trust volunteers.  From a project’s perspective, 
volunteers are effectively anonymous.  If a volunteer behaves maliciously, for example by intentionally 
falisfying computational results, the project has no way to identify and punish the offender.  In other 
HPC paradigms, such offenders can be identified and disciplined or fired.

Technical factors in volunteer computing

Volunteer computing poses a number of technical problems.  For the most part, these problems are 
addressed by BOINC, and scientists need not be concerned with them.  The problems include:

Heterogeneity: the volunteer computer population is extremely diverse in terms of hardware 
(processor type and speed, RAM, disk space), software (operating system and version) and networking 
(bandwidth, proxies, firewalls).  BOINC provides scheduling mechanisms that assign jobs to the hosts 
that can best handle them.  However, projects still generally need to compile applications for several 
platforms (Windows 32 and 64 bit, Mac OS X, Linux 32 and 64 bit, various GPU platforms).  This 
difficulty may soon be reduced by running applications in virtual machines.

Sporadic availability and churn: volunteer computers are not dedicated.  The time intervals when a 
computer is on, and when BOINC is allowed to compute, are sporadic and generally unpredictable. 
BOINC tracks these factors and uses them in estimating job completion times.  In addition, computers 
are constantly joining and leaving the pool of a given project.  BOINC must address the fact that 
computers with many jobs in progress may disappear forever.

Result validation: because volunteer computers are anonymous and untrusted, BOINC cannot assume 
that job results are correct, or that the claimed credit is accurate.  One general way of dealing with is 
replication: that is: send a copy of each job to multiple computers; compare the results; accept the result 
if the replicas agree; otherwise issue additional replicas.  This is complicated by the fact that different 
computers often do floating-point calculations differently, so that there is no unique correct result. 
BOINC addresses this with a mechanism called homogeneous redundancy that sends instances of a 



given job to numerically identical computers.  In addition, redundancy has the drawback that it reduces 
throughput by at least 50%.  To address this, BOINC has a mechanism called adaptive replication that 
identifies trustworthy hosts and replicates their jobs only occasionally.

Scalability: large volunteer projects can involve a million hosts and millions of jobs processed per day. 
This is beyond the capabilities of grid and cluster systems.  BOINC addresses this using an efficient 
server architecture that can be distributed across multiple machines.  The server is based on a relational 
database, so BOINC leverages advances in scalability and availability of database systems.  The 
communication architecture uses exponential backoff after failures, so that the rate of client requests 
remains bounded even when a server comes up after a long outage.

Security: volunteer computing poses a variety of security challenges.  What if hackers break into a 
project server and use it to distribute malware to the attached computers?  BOINC prevents this by 
requiring that executables be digitally signed using a secure, offline signing computer.  What if hackers 
create a fraudulent project that poses as academic research while in fact stealing volunteers’ private 
data?  This is partly addressed by account-based sandboxing: applications are run under an 
unprivileged user account and typically have no access to files other than their own input and outputs. 
In the future, stronger sandboxing may be possible using virtual machine technology.

The future of volunteer computing

Volunteer computing has demonstrated its potential for high-throughput scientific computing. 
However, only a small fraction of this potential has been realized.  Moving forward will require 
progress in three areas:

Increased participation: the volunteer population has remained around 500,000 for several years. 
Can it be grown by an order magnitude or two?  Several factors could help: a) a dramatic scientific 
breakthrough such as the discovery of a cancer treatment or a new astronomical phenomenon; b) the 
effective use of social networks like Facebook; c) bundling of BOINC by computer manufacturers or 
software vendors (currently, Folding@Home is bundled with the Sony Playstation 3 and with ATI GPU 
drivers).

Increased scientific adoption: the set of volunteer projects is small and fairly stagnant.  Several 
factors might change this: a) the creation of “umbrella projects” by universities and other institutions; 
b support for higher-level computing models such as workflow management systems and MapReduce; 
c) promotion of volunteer computing by scientific funding agencies; d) increased acceptance of 
volunteer computing by the HPC and computer science communities.

Tracking technology: today, the bulk of the world’s computing power is in desktop and laptop PCs, 
but in a decade or two it may shift to energy-efficient mobile devices.  Such devices, while docked, 
could be used for volunteer computing.

If these challenges are addressed, and volunteer computing experiences explosive growth, there will be 
thousands of projects.  At this point volunteers can no longer be expected to evaluate all projects, and 
new allocation mechanisms will be needed: for example, the “mutual fund” idea mentioned above, or 
something analogous to decision markets, in which individuals are rewarded for participating in new 
projects that later produce significant results; such “expert investors” would steer the market as a 
whole.


