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Abstract

Public computing can potentially supply not only 
computational power but also memory and short term 
storage resources to grid and cluster scale problems. 
Gene sequence alignment is a fundamental 
computational challenge in bioinformatics with 
attributes such as moderate computational 
requirements, extensive memory requirements, and 
highly interdependent tasks. This study examines the 
performance of calculating the alignment for two 
100,000 base sequences on a public computing 
platform utilizing the BOINC framework. When 
compared to the theoretical, optimal sequential 
implementation, the parallel implementation achieves 
speedup by a factor of 1.4 and at the point of maximum 
parallelism and ends with a speedup of 1.2. This 
speedup factor is based on extrapolation of the 
sequential performance of a segment of the problem. 
This extrapolation would require a theoretical 
sequential machine with approximately 37.3 GB of 
working memory or suffer performance degradation 
from use of secondary storage during the calculation. 

1. Introduction 

Bioinformatics has emerged as a popular and 
fruitful field of study drawing from many scientific 
disciplines including computer science, biology, 
chemistry, and physics. The computational challenges 
faced by bioinformatics feature enormous data sets, 
intense computation, and a wide variety of unanswered 
questions. Gene sequence alignment is one such 
problem that serves as an initial step in many of the 
problems in bioinformatics. This problem is often 
addressed using dynamic programming algorithms [1]. 

Public computing, or Internet computing, is an 
architecture designed to harness the idle cycles of 
Internet connected workstations. The Berkeley Open 
Infrastructure for Network Computing (BOINC) is a 
general framework designed to implement this new 
architectural paradigm. The system software is being 
developed at the Space Sciences Laboratory at the 
University of California, Berkeley with project leader 
Dr. David P. Anderson [3]. This system is currently 
deployed for the SETI@home project and a growing 
number of additional projects. The system is designed 
as a software platform utilizing computing resources 
from volunteer computers.  

While the use of public computing has seen traction 
in large scale projects such as SETI@home, research 
into use of the platform for smaller, Grid and cluster 
scale projects has seen little attention. Rosenberg looks 
at public computing scheduling in the context of fault 
tolerance and efficient scheduling with highly 
interdependent tasks [4]. Grid related research examine 
many issues shared with public computing such as the 
difficulty of data co-location [5]. Additionally, systems 
such as Condor utilize resource scavenging techniques 
similar to public computing, and there is work to 
integrate Condor with Grid systems [6]. 

The gene sequence alignment problem was chosen 
primarily for the interesting structure of task 
dependencies. In addition to highly interdependent 
tasks, the calculation requires a large amount of 
memory to store and calculate the alignment matrix. 
The other attributes of the problem, data 
communication costs and computational intensity, are 
relatively light compared to the task dependency. This 
experiment explores the issues with scheduling 
dependent tasks of a computation on the public 
computer architecture. 
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2. Problem Description

The goal of this experiment is to align two gene
sequences according to a scoring system penalizing
gaps and mismatches between the sequences. An
example takes two sequences of genes composed of the
bases A, C, G, and T:

Figure 1 Sequence Example

These sequences can be aligned in a number of ways
taking into account inserting gaps and accounting for
mismatched bases. A scoring system can penalize the
addition of gaps and mismatches. Different alignments
will produce different scores. Take, for example, a gap
penalty of -2, a mismatch penalty of -1, and a match
score of 1. The original alignment shown gives the
following score: 

Figure 2 Scoring Example 

Through the addition of gaps, the score can be 
improved despite gap penalties:

Figure 3 Improved Score 

All possible scoring combinations are on the order

of  when aligning an m length sequence with

an n length sequence. The experiment examined in this
paper calculates and finds the best alignment. The scale

of this problem is  for both the number of

comparisons required and the memory used. 

mnO

mnO

3. BOINC Architecture 

The BOINC architecture consists of a server
complex handling scheduling, central result processing,

and participant account management, a core software
client running on participant nodes, and project
specific client software running on participant nodes
(Figure 4). The server complex consists of a database,
web server, and five BOINC specific processes. These
server components are designed to run on either a
single system or splitting the various functions across
several servers. Communication between participant
nodes and the server complex is handled via standard
HTTP.

Figure 4 Basic BOINC Architecture

Computing resources are allocated to the
computational problem by the assignment of
workunits. Workunits are application specific and 
represent a subset of the entire computational problem.
Where workunits are the basic input mechanism for 
participating nodes, result units are the basic output
mechanism.

3.1. Default BOINC Scheduling

The default scheduling mechanism in the BOINC
architecture pays very little attention to optimizing
performance or throughput. Because BOINC is
designed for very large scale participation for
enormous computations, detailed implementation of
scheduling is, for the most part, unnecessary. The
study of computational problems such as this gene
sequence alignment calculation is to examine the
viability of the BOINC architecture for problems of
this scale. 

The design of the BOINC scheduling algorithm
pays close attention to the communication overhead
imposed by a restricted interconnection network. In a
large deployment, slow and unreliable network links
can be greatly impacted by the polling nature of the
BOINC client software communication with the
scheduling server. Communication can bottleneck due
to three major factors:

— Large amounts of workunit data
— Large amounts of result data
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Table 1 Participant Nodes

Processor Configuration Operating System Number
Intel® Pentium® 4 CPU 2.80GHz Red Hat Enterprise Linux WS release 3 23
Intel® Pentium® 4 CPU 2.66GHz Red Hat Enterprise Linux WS release 3 5
Quad Intel® XEON™ MP CPU 1.90GHz Red Hat Enterprise Linux WS release 3 1
AMD Athlon™ XP 2.08 GHz Microsoft Windows XP 1

— Large number of participant nodes.
Scheduling in the large scale projects currently handled
by the BOINC architecture allows clients to request
work based on user preferences. These preferences are
on the scale of days of work, and current BOINC
projects such as SETI@home are in no danger of 
running out of workunits to process. The algorithm in
the standard BOINC distribution can be seen as a first
come, first served algorithm where the client can 
determine the amount of work served.

3.2. BOINC Scheduling Alternatives 

Three new BOINC scheduling alternatives are used
in this experiment to measure the performance benefits
offered to the calculation by the architecture. The first
algorithm is a naïve first come, first serve approach
serving a single workunit to nodes (FCFS-1). The
second algorithm is a naïve first come, first serve
approach serving five workunits to nodes (FCFS-5).
The final algorithm is a scheduler based on the ant
colony heuristic.

The first come, first serve algorithms allocate either 
one (FCFS-1) or five (FCFS-5) workunits to a
participant node during each work request. Both
algorithms account for the current workunits in 
progress on a node by subtracting the current
workunits in progress from the workunit allocation.
When a node contacts the scheduler to request work,
the algorithm allocates enough workunits to bring the
node workload back to the target level according to 
either FCFS-1 or FCFS-5 target workloads. FCFS-1
results in a single workunit being processed completely
by a node before receiving more work. FCFS-5 allows
a node to work on five workunits at a time. If a node
contacts the scheduler before it completes all five
workunits, the scheduler is allowed to send additional
workunits to make the total workload five workunits.

The ant colony algorithm is a heuristic based on a 
colony of ants using pheromone trails to optimize
retrieval of food from a food source and returning it to
the colony [7]. The scheduling algorithm uses the ant-
colony model as a heuristic for determining workunit
assignment to participant nodes. The algorithm can be
described in terms of the ant-colony metaphor as: the
computational resources are the food sources; the

computational power is the food; and the job workunits
are the ants. The workunit “ants” leave pheromone
trails by leaving the server complex and traveling to 
the computational nodes and returning results back to
the server complex. These trails degrade over time so
workunits must continually travel to the computation
node to reinforce the pheromone level. These
pheromone trails influence future workunit “ants” by
increasing the probability of choosing the
computational resource path. Over time, the
computational resources which provide the quickest
turn around on workunit computation will attract the
most workunits.

The ant colony scheduling technique is a 
combination of resource discovery, task mapping, and
fault tolerance. The use of pheromone levels to
determine the performance of participant nodes acts as 
a dynamic resource discovery mechanism. This metric
is then used to assign available tasks during the
mapping phase. By comparing pheromone levels of
different nodes, the algorithm can map an appropriate
proportion of the available work. On the other hand,
since the algorithm uses pheromones as a probabilistic
heuristic, the algorithm can occasionally test increasing 
and decreasing task assignment in order to reevaluate a
node as more or less powerful based on performance.
Finally, since all of the metrics of computational
power, communication attributes, node parallelism,
architecture, and reliability are consolidated into the
pheromone metric, the scheduler can react to
fluctuations in any of the metrics. This unified metric
decreases over time. Due to this, drops in performance
due to faults, communication congestion, or other
factors will lead to decreased pheromone levels and
proportionally fewer task assignments.

3.3. Participant Nodes 

The sequence alignment experiment is executed on
a BOINC implementation using a variety of available
resources. The environment has 30 participant nodes.
The breakdown of processor configurations, host
operating systems, and number of each node are shown
in Table 1. 

The 28 Pentium 4 workstations reside on a local
network connected to the same campus network as the
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Quad Xeon workstation. The campus network contacts
the BOINC central server via the Internet. The AMD
Athlon workstation resides on the BOINC server
network (Figure 5). All participant nodes use an
unmodified BOINC core client version 3.20. The
BOINC server software version 3.20 runs on a single
host with modifications for the implemented
scheduling algorithms.

Cable Modem

Figure 5 Network Diagram

4. Sequential Algorithm 

The sequential algorithm uses a dynamic
programming approach to calculate the score for all
possible alignments simultaneously [2]. The algorithm
produces an alignment matrix as its final output with
the scores for each alignment in each cell of the matrix.
The alignment matrix takes each base of the first gene
sequence as a column heading and each base of the
second gene sequence as a row heading:
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Figure 6 Inital Alignment Matrix 

The algorithm then begins at the upper left corner of
the matrix. The base from the column heading is
compared to the base of the row heading. A match is
given a score (1) while a mismatch is given a penalty (-

1). This match adjustment, m, is combined with the
score from the upper-left neighbor. Additionally, the
scores from the upper neighbor and left neighbor are
each combined with a gap penalty (-2). The score, ni,j,

for row, i, and column, j, is calculated with the 
formula:

2,2,,0max 1,,11,1, jijijiji nnmnn
The resulting scores express the fitness of a particular
alignment based on the gap and matching penalties set 
in the calculation.

Figure 7 Complete Scoring Matrix 

Once all the scores are calculated, the matrix can be
searched for the highest score and trace back through
the neighboring values to find the best sequence
alignment. The dotted line in Figure 7 represents the
alignment from the previous example. The starting
score 5 differs from the example by the -2 from the
trailing G base that is unmatched at the end of the
sequence. Following the dotted line, a diagonal
direction represents a matching sequence alignment.
Moving left horizontally represents a gap in sequence
2, while moving upward vertically represents a gap in
sequence 1. 

Based on the score formula, the score for an entry in
the alignment matrix depends on the scores calculated
for its previously calculated neighbors. The following
diagram illustrates the dependencies of this calculation:
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Figure 8 Sequence Alignment Calculation
Dependencies

The squares in the diagram represent the cells of the 
alignment matrix whereas the arrows represent the
dependencies of the cell with its neighbors. The top
and left border cells assume a zero score for the
nonexistent neighbors. The sequential algorithm can
progress through the calculation of cells either in row-
major, column-major, or diagonal-major order to
satisfy the dependencies of each calculation (Figure 9).
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Figure 9 Sequence Alignment Task Order

The sequential performance measures used in this
experiment are extrapolated from the calculations
needed for a subset of the entire problem. This
experiment aligns two generated sequences each of
length 100,000. Because the theoretical sequential
program would benefit from performing the entire
calculation in memory, extrapolated results are 
acceptable because this theoretical maximum
performance would require a machine with 37.3 GB of
memory in order to store the entire solution matrix if 
each cell required a 32 bit integer. Even with memory
reduction techniques for storing the sparse solution
matrix, the memory required would be many gigabytes.
The extrapolated sequential benchmark times only
account for the generation of the solution matrix and 
do not include searching the matrix for the final
sequence alignment. 

5. BOINC Implementation

The parallel BOINC implementation of the
sequence alignment algorithm divides the solution
matrix into equally sized sub-matrices and calculates
the solutions on the participant nodes. To handle the
dependencies of adjacent sub-matrices, the server
complex relays the adjacent columns and rows to new
compute nodes as they are completed. The final 
solution matrices are not transferred back to the central
server. The experiment implemented for this study
does not search the solution matrix for the best
alignment. The focus of the experiment is on the task
dependency of generating the solution matrix. While
returning to the solution matrix to find the final
alignment is an important aspect of the calculation, the
version of the BOINC software used in the experiment
lacked a feature under development which would allow
leaving the solution matrix on the client nodes. The 
missing feature of persistent file storage on client
nodes would allow the BOINC implementation to
leave the solution matrix on the compute node and 
send later tasks for alignment retrieval back to nodes
containing the appropriate solution segment. While
searching these solution matrices are not explored, the
solution matrix is written to disk on the client in order
to account for disk write times in the benchmarks.

5.1. Workunits

Each workunit represents a sub-matrix of the final
solution matrix. The final solution matrix of
dimensions 100,000 by 100,000 is divided into 2,500
equal parts using sub-matrices of dimensions 2,000 by
2,000. The input file contains the position of the sub-
matrix in the final solution matrix, and the dimensions
of the sub-matrix.

Three additional files are included in each workunit
containing: the values of the column left-adjacent to
the workunit, the values of the row top-adjacent to the
workunit, the value of the corner top-left-adjacent of 
the workunit (Figure 10).
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Figure 10 Workunit Input

The gene sequences are not included in each 
workunit download. Instead, both sequences are
transferred in their entirety with the client program.
This reduces the redundant data transferred to the
client as each workunit will reuse this data throughout
the application.

5.2. Result Units 

As stated previously, the full alignment matrix is 
not included with the results sent back to the central
server. The results are written to disk on the client
node, and required for completion of a workunit. To
reduce communication costs, the result unit sends back
only the right column, bottom-right corner cell, and 
bottom row to the server (Figure 11). These three
outputs are necessary for the server to generate the new
workunits dependent on the current workunit.
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Figure 11 Result Unit Output

5.3. Server Components

While most of the server components are standard,
the assimilator plays a central role in the algorithm due
to the inter-task dependencies of the algorithm. The
web interface, file upload handler, transitioner, and file
deleter were unchanged from the standard distribution.
The cgi RPC handler and feeder were modified
versions of the software used in all three experiments
to implement the ant colony scheduling algorithm.

The assimilator of the sequence alignment
experiment generates new workunits as the required
dependencies are satisfied. Upon receiving the results
of a completed workunit, the assimilator checks its 
records for required inputs of neighboring workunits. If 
a workunit is found with all three required inputs (top-
adjacent row, left-adjacent column, and top-left
adjacent corner,) the assimilator generates the new
workunit input file and transfers the required inputs to 
the download directory of the server. Compute nodes
contacting the scheduler can then download these input
files and the new workunits.

6. Performance Results and Analysis 

Task dependency of the calculation produces
interesting speedup results due to the amount of
parallelism available in the problem initially growing
to a peak and then dwindling back to sequential. The
structure of task dependency shows differing amounts
of speedup for all three scheduling algorithms at
different points of the calculation.

Examination of the results must be viewed in the
context of the extrapolated sequential running times.
These times are based on the best CPU time of a single
workunit sized alignment. This time is extrapolated to 
2500 workunits for total execution of the problem
sequentially for a total runtime of 5000 seconds. This
extrapolated time would require in-memory
computation of the entire problem in 37.3 GB of
memory. A realistic sequential execution would turn to 
secondary storage increasing the run time. The parallel
runtimes represent all computation and communication
costs associated with an actual execution.

6.1. Runtime Comparison 

Figure 12 shows the parallel runtimes of each
scheduling approach versus the extrapolated sequential
runtime:
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Figure 12 Parallel Runtime Comparison

The runtimes of all three algorithms follow a slight
sinusoidal curve due to the task dependency of the
sequence alignment problem. Initially, the task 
dependencies dictate little parallelization available to 
the system. Tasks must be completed in diagonal major
order in order to satisfy the dependencies for later
calculations. At step one in the calculation, only one
workunit is available. Step two offers two workunits;
step three offers three; and so on. This trend continues
until the largest diagonal of the matrix is reached and
then the number of tasks that can be completed in 
parallel then starts to increment downward until the 
lower right corner of the matrix is reached. The parallel
implementation can process each of these diagonals in
parallel. The first portion of the sinusoid in these
runtime curves represents the downward trend of 
runtimes due to the increasing parallelization. The 
upward curves of the last portion of the sinusoids
represent increasing runtimes due to decreased
parallelization.

A close look at the side-by-side runtime comparison
shows the FCFS-5 algorithm has the steepest curves at
both the beginning and end of the calculation due to
the larger blocks of workunits on individual nodes
exacerbating the problem of reduced parallelization
due to task dependency. However, the differences in
the curves are somewhat negligible due to the task 
generation mechanism of the parallel implementation.
New tasks are generated as nodes complete old tasks
and report results. The server then accepts the result
and generates all tasks with satisfied dependencies.
This results in a very small pool of workunits to offer 
nodes contacting the scheduler. For completed tasks,
the scheduler can generate zero, one, or two new tasks.
If participating nodes are constantly requesting more
work from the scheduler, the likelihood of the
scheduler having more than one or two tasks available
for scheduling is low. Due to this phenomenon, all 
three algorithms will perform similarly to FCFS-1 

because of the high likelihood of there only being one
workunit to schedule. The speedup comparison
illustrates more of this phenomenon.

6.2. Speedup Comparison 

Figure 13 shows the parallel speedup versus
sequential for all three scheduling algorithms:
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Figure 13 Parallel Speedup 

The speedup comparisons again show some interesting
although subtle phenomenon. Looking closely at the
speedup curves of the three algorithms, all three show
slightly different performance peaks and shapes. All
three have peaks roughly near the center of the
computation due to maximum potential parallelization.
The conservative FCFS-1 algorithm shows a steady
increase toward the performance peak nearly dead
center of the computation. Ant colony features a peak
somewhat closer to the beginning of the computation.
FCFS-5 shows a slower progression to a peak closer to
the end of the computation and a drop-off at the end of
the calculation. 

The FCFS-1 curve represents the conservative
solution to the scheduling problem serving single
workunits as they are available according to the task
dependency of the calculation.

FCFS-5 represents a more aggressive scheduling
approach where most initial diagonals are executed
sequentially by single nodes. Take the first few
diagonals as an example. When a node completes the 
first calculation, two new workunits are generated.
With FCFS-5, the next node to contact the server 
would likely receive both workunits. These workunits 
are run to completion and returned to the scheduler.
The next node will, again take all three workunits. This
batching of workunits leads to reduced parallelization
available for other idle nodes resulting in smaller
speedups. On the other hand, this approach also
generates larger pools of available workunits, more
quickly. Toward the middle of the computation, large
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pools of workunits are available for the nodes. Nodes
each contact the scheduler and have workunits 
available leading to greater parallelization later in the
calculation.

The ant colony scheduling exhibits different
behavior. Because the ant colony scheduler operates
blocks limited by the pool of available workunits, it
must initially function similarly to FCFS-1. It can only
schedule the single workunit available to a requesting 
node. Additionally, the small amount of parallelization
during the beginning of the computation leads to most
nodes having very low or non-existent pheromone
levels. Later in the beginning portion of the
computation, larger pools of workunits become
available. Pheromone levels are likely wildly varying
due to the randomness of encountering available work
during the initial portions of the computation.
Occasionally, the stochastic decision making of the ant
colony algorithm will choose to send multiple
workunits to a node either due to sheer chance or due
to a node with an abnormally high pheromone level
from the sheer coincidence of a workunits being
available at each contact with the server. This process
results in the algorithm performing as FCFS-1 for the
most part with an occasional sending of multiple
workunits. This leads to a buildup of available
workunits which leads to greater parallelization early
in the computation. Once a large pool of workunits is 
available, the algorithm will then perform normally
allocating blocks of workunits to nodes according to
pheromone level. After the major diagonal of the
matrix is passed, the available workunits will dwindle,
and the now aggressive ant colony algorithm will 
perform similarly to FCFS-5 where scheduling blocks
of workunits leads to eventual starvation of nodes
requesting work toward the end of the computation.

7. Conclusions

The public computing implementation of the gene
sequence alignment problem illustrates the benefits of 
the architecture in harnessing not only idle computing
cycles of participating nodes but also memory and
secondary storage. The ability of public computing to 
easily aggregate these resources lends itself to 
calculating problems such as gene sequence alignment

which feature memory growth. While the

speedup offered due to parallelization is modest, the
sequential runtimes are extrapolated from the
sequential computation time of a portion of the final
solution matrix. If this extrapolation were to be
realized for the computation of comparing two 
sequences of 100,000 bases used in this experiment, a 
machine with 37.3 GB of memory if no memory

reduction techniques for storing the solution matrix are 
used. Future research should include a direct
comparison with speeds of a parallel implementation
on a small cluster and a sequential implementation.

mnO

The performance comparisons of the three
scheduling algorithms do expose some interesting
phenomenon of the parallel implementation. The ant
colony scheduling algorithm expresses some
interesting emergent behavior from its scheduling
approach. The algorithm initially schedules workunits
conservatively in a similar fashion to FCFS-1. This
conservative scheduling has the additional factor of 
occasionally sending multiple workunits to some of the 
nodes. This results in a quicker buildup of available
workunits leading to increased, early parallelization.
The ant colony algorithm, however, does not continue
its conservative scheduling later in the calculation
leading to a quick depletion of available workunits.
Overall, it does offer the greatest peak performance of 
all three algorithms with a 1.4 times sequential speedup
midway through the calculation.
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